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1 Visual-Inertial Systems

In this section, we briefly overview the EKF-based visual-inertial system which fuses IMU readings
and environmental feature measurements.

1.1 Propagation

Figure 1: Sensor platform comprising an IMU and a camera. {IGq̄,GpI} represents the pose (orientation and position)
of the IMU frame {I} with respect to the global frame {G}. Gpfi and Ipfi denote the position of the ith feature in
Global frame and Local IMU frame, respectively; {C} is the camera frame.

Specifically, the state vector x consists of the IMU state xI and the feature state xf .

x =
[
x>I x>f

]>
(1)

=
[
I
Gq̄
> Gp>I

Gv>I b>g b>a | Gp>f1 . . . Gp>fM
]>

(2)

where I
Gq̄ is the unit quaternion that represents the rotation I

GR from global frame {G} to the
IMU frame {I}; GpI and GvI are the IMU position and velocity in {G}, respectively; bg and
ba are the gyroscope and accelerometer biases; and the feature state xf comprises the global
position of M landmarks. Throughout the paper x̂ is used to denote the current best estimate of
a random variable x with x̃ = x � x̂ denotes the error state. For the quaternion error state, we
employ the JPL multiplicative error [1] and use the δθ ∈ R3 defined by the error quaternion i.e.,
δq̄ = q̄⊗ ˆ̄q ' [12δθ

> 1]>. The “�” and “�” operations map elements to and from a given manifold,
equate to simple “+” and “-” for vector variables [2].

The IMU kinematics are used to evolve the state from time tk to tk+1 [1]:

I
G

˙̄q(t) =
1

2
Ω(ω(t))IGq̄(t) (3)

GṗI(t) = GvI(t) (4)

Gv̇I(t) =
I(t)
G R>a(t) (5)

ḃg(t) = nwg(t) (6)

ḃa(t) = nwa(t) (7)
Gṗfi(t) = 0 i = 1, . . . ,M (8)

where ω(t) = [ω1 ω2 ω3]
> and a(t) are the angular velocity and acceleration in the IMU local

frame {I}; Ω(ω(t)) =

[
−bωc ω
−ω> 0

]
where b·c is the skew-symmetric matrix. nwg and nwa are white
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Gaussian noise that drive the IMU biases. A canonical three-axis IMU provides linear acceleration
and angular velocity measurements, Iam and Iωm, expressed in the local IMU frame {I} modeled
as:

am(t) = a(t) + I
GR(t)Gg + ba(t) + na(t) (9)

ωm(t) = ω(t) + bg(t) + ng(t) (10)

where Gg ' [0, 0,−9.8]> is the gravitational acceleration expressed in {G}, ng and na are zero-
mean white Gaussian noise. I

GR denotes the rotation matrix from global frame to local IMU frame.
Linearizing Eq.(3)-(7) about the current state estimate yields the state estimate propagation model:

I
G

˙̄̂q(t) =
1

2
Ω (ω̂(t)) IG ˆ̄q(t) (11)

G ˙̂pI = Gv̂I(t) (12)

G ˙̂vI(t) =
I(t)
G R̂>â(t) (13)

˙̂
bg(t) = 0 (14)

˙̂
ba(t) = 0 (15)

G ˙̂pfi(t) = 0 (16)

where â(t) = am(t)− b̂a(t) and ω̂(t) = ωm(t)− b̂g(t). For the sake of EKF covariance propogation,
we define our error state as:

x̃ =
[
x̃>I x̃>f

]>
(17)

=
[
I
Gδθ

> Gp̃>I
Gṽ>I

Gb̃>g
Gb̃>a | Gp̃>fi . . . Gp̃>fM

]
(18)

Now we can conclude the continuous-time error state propagation as:

˙̃x(t) =

[
˙̃xI(t)
˙̃xf (t)

]
(19)

=

[
FI(t) 015×3M

03M×15 03M

] [
x̃I(t)
x̃f (t)

]
+

[
GI(t)

03M×12

]
n(t) (20)

= F(t)x̃(t) + G(t)n(t) (21)

where n(t) =
[
n>g n>wg n>a n>wa

]>
represents the system noise. The continuous-time error-state

transition matrix FI(t) and the input noise matrix GI(t) are

FI(t) =


−bω̂c 03 03 −I3 03

03 03 I3 03 03

−IGR̂>bâc 03 03 03 −IGR̂>

03 03 03 03 03

03 03 03 03 03

 (22)

GI(t) =


−I3 03 03 03

03 03 03 03

03 03 −IGR̂> 03

03 I3 03 03

03 03 03 I3

 (23)
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We model the system noise as zero-mean Gaussian process with auto-correlation.

E
[
n(t)n>(t)

]
= Qδ(t− τ) (24)

In piratical EKF implementation, we can numerically propagate the state estimate when new IMU
measurements Eq. (9)(10) are received. In order to propagate the system error covariance we
typically derive the discreate-time state translation matrix from time tk to tk+1 as Φ̂(tk+1, tk). It
can be found either numerically or analytically [3] as the solution to the following equations with
initial condition Φ̂(k, k) = I15+3M .

˙̂
Φ(k + 1, k) = F(t)Φ̂(k + 1, k) (25)

which can be calculated analytically as:

Φ̂(k + 1, k) =



Φ̂11 03 03 Φ̂14 03 03

Φ̂21 I3 I3∆t Φ̂24 Φ̂25 03

Φ̂31 03 I3 Φ̂34 Φ̂35 03

03 03 03 I3 03 03

03 03 03 03 I3 03

03×3M 03×3M 03×3M 03×3M 03×3M I3M


(26)

where ∆t = tk+1 − tk and:

Φ̂11 = exp

(
−
∫ tk+1

tk

bω̂(τ)cdτ
)

(27)

Φ̂14 = −
∫ tk+1

tk

Ik+1|k
Iτ

R̂dτ (28)

Φ̂21 = −bGp̂Ik+1|k −
Gp̂Ik|k −

Gv̂Ik|k∆t+
1

2
Gg∆t2cIk|kG R̂> (29)

Φ̂24 =

∫ tk+1

tk

∫ θ

t1

G
IsR̂b

Is âc
∫ s

tk

Is
Iτ

R̂dτdsdθ (30)

Φ̂25 = −
∫ tk+1

tk

∫ s

tk

G
Iτ R̂dτds (31)

Φ̂31 = −bGv̂Ik+1|k −
Gv̂Ik|k + Gg∆tcIk|kG R̂> (32)

Φ̂34 =

∫ tk+1

tk

Is
G R̂>bIs âc

∫ s

tk

Iτ
Is

R̂>dτds (33)

Φ̂35 = −
∫ tk+1

tk

Iτ
G R̂>dτ (34)

The standard EKF propagates the error covariance as:

Pk+1|k = Φ̂(k + 1, k)Pk|kΦ̂(k + 1, k)> + Qk (35)

We use x̂j|i and Pj|i to represent the state estimate and covariance at time-step j computed using
measurements up to time-step i. The discrete-time system noise covariance Qk can be computed
as:

Qk =

∫ tk+1

tk

Φ̂(k + 1, τ)G(τ)QG(τ)>Φ̂(k + 1, τ)>dτ (36)

RPNG-2021-FEJ2 3



1.2 Measurement Update

Assuming a calibrated perspective camera, the bearing measurement of the ith feature at timestep
tk+1 can be related to the state by the following:

zk+1 = h(xk+1) + nk+1 (37)

:= Λ(Ck+1pfi) + nk+1 (38)

where nk+1 ∼ N(0,Rk+1) is the measurement noise; Λ is the camera perspective projection function
that project the 3D feature point Ck+1pfi expressed in the current IMU frame {Ck+1} onto the image
plane:

Λ(
[
x y z

]>
) =

1

z

[
x
y

]
(39)

where Ck+1pfi =

xy
z

 = C
I R

Ik+1

G R
(
Gpfi,k+1

− GpIk+1

)
+ CpI (40)

where {CI R, CpI} represent the transformation between camera and IMU (see Figure 1). Linearizing
(37) with respect to the current state x̂k+1|k we get the following:

zk+1 ' h(x̂Ik+1|k , x̂fk+1|k) + ĤIk+1
(xIk+1

� x̂Ik+1|k) + Ĥfk+1
(xfk+1

� x̂fk+1|k) + nk+1 (41)

= h(x̂Ik+1|k , x̂fk+1|k) +
[
ĤIk+1

Ĥfk+1

] [x̃Ik+1|k

x̃fk+1|k

]
+ nk+1 (42)

= h(x̂k+1|k) + Ĥk+1x̃k+1|k + nk+1 (43)

⇒ rk+1 , zk+1 − h(x̂k+1|k) (44)

where Ĥk+1 denotes the Jacobian evaluated at x̂k+1|k. Ĥk+1 only contains non-zero blocks for the
pose and the ith feature and, thus is computed as (k + 1|k subscripts are dropped for brevity):

Ĥk+1 (45)

=
[
ĤIk+1

Ĥfk+1

]
(46)

=
∂rk+1

∂Ck+1|k p̃fi

[
∂
Ck+1|k p̃fi
∂δθk+1

∂
Ck+1|k p̃fi
∂Gp̃Ik+1

∂
Ck+1|k p̃fi
∂GṽIk+1

∂
Ck+1|k p̃fi
∂Gb̃g

∂
Ck+1|k p̃fi
∂Gb̃a

∣∣∣ . . .
∂
Ck+1|k p̃fi

∂Gp̃fi,k+1|k
. . .

]
= ∇ĥi

[
Ĥθk+1

Ĥpk+1
Ĥvk+1

Ĥbg,k+1
Ĥba,k+1

∣∣∣ . . . Ĥfi,k+1
. . .
]

(47)

= ∇ĥi

[
Ĥθk+1

Ĥpk+1
03×3 03×3 03×3

∣∣∣ . . . Ĥfi,k+1
. . .

]
(48)

where

Ĥθk+1
= bIk+1|k

G R̂
(
Gp̂fi,k+1|k −

Gp̂Ik+1|k

)
c (49)

Ĥpk+1
= −Ĥfi,k+1

= −Ik+1|k
G R̂ (50)

∇ĥi =
1

ẑi
2

[
ẑi 0 −x̂i
0 ẑi −ŷi

]
C
I R (51)

RPNG-2021-FEJ2 4



Once the measurement residual rk+1 and Jacobian Hk+1 with respect to states are computed and
successfully pass the Mahalanobis gating test, we can apply the EKF update equations [4] to update
the filter as:

Sk+1 = Hk+1Pk+1|kH
>
k+1 + Rk+1 (52)

Kk+1 = Pk+1|kH
>
k+1S

−1
k+1 (53)

x̂k+1|k+1 = x̂k+1|k �Kk+1rk+1 (54)

Pk+1|k+1 = Pk+1|k −Kk+1Sk+1K
>
k+1 (55)

1.3 Observability Analysis

System observability plays a crucial role in state estimation [5, 6]. Understanding system observabil-
ity provides a deep insight about the system’s geometrical properties and determines the minimal
measurement modalities needed. With the state transition matrix, Eq. (26), and measurement
Jacobian, Eq. (44), we construct the observability matrix [7]:

O ,


H0Φ(0, 0)
H1Φ(1, 0)

...
Hk+1Φ(k + 1, 0)

 (56)

If O is of full column rank, the system is fully observable. However, VINS is partial observable with
a nullspace N satisfying ON = 0 (see [8, 7]). The nullspace N describes the state unobservable
subspace cannot be recovered with measurements.

The nullspace N for VINS should be of four d.o.f and relates to the global yaw and transla-
tion [7]. At timestep tk it can be computed as:

Nk =



03
Ik
GRGg

I3 −bGpIkcGg
03 −bGvIkcGg
03 03

03 03
...

...
I3 −bGpfi,kcGg
...

...


(57)

it is easy to verify that the “ideal” observability matrix Ǒj,k = ȞjΦ̌(j, k)which evaluate at true
state satisfies Ǒj,kNk = 0 for any j and k . The standard EKF, which always computes the state

transition Φ̂(k, 0) and measurement Jacobian Ĥk using the current state estimates, makes the
global orientation appears to be observable and thus reducing the nullspace to only three d.o.f [9].
This causes the filter gain extra information and become overconfident to its estimation results.
Moreover, a valid state transition matrix should have the semi-group property [10]:

Φ(k + 1, k − 1) = Φ(k + 1, k)Φ(k, k − 1) (58)

The state translation matrix Φ̂ [see Eq. (26)] evaluated at current state estimate for standard EKF
violates this property s.t. (see [9],[10, Lemma 4.1]).

Φ̂(k + 1, k − 1) 6= Φ̂(k + 1, k)Φ̂(k, k − 1) (59)

The above issues cause inconsistency and degrade accuracy.

RPNG-2021-FEJ2 5



2 Consistent Visual-Inertial Estimator Design

Leveraging the prior observability-based consistent estimator designs [8] and motivated by the great
success of such estimators in visual-inertial systems [11, 9], we aim to improve this observability-
based design by addressing its significant caveat of (potentially) large linearization errors. To this
end, in what follows, after reviewing the observability-based methodology, we present in detail the
proposed FEJ2 consistent estimator design methodology.

2.1 Observability-based Methodology

2.1.1 OC-VINS

OC [11, 7] maintains the proper system observability properties by enforcing the initial (and thus
the current) unobservable nullspace N0 to span correct system unobservable directions. Note that
we assume there is one single feature in the state vector and can be detected and initialized into
state vector as Gp̂f1|0 at the first timestep t0. Note that due to the feature is zero dynamics, we
have p̂fk|0 = p̂f1|0 .

HkΦ(k, 0)N0 = 0, ∀k ≥ 0 (60)

where N0 = N(x̂1|0) =



03
I1|0
G R̂Gg

I3 −bGp̂I1|0cGg

03 −bGv̂I1|0cGg

03 03

03 03

I3 −bGp̂f1|0c
Gg


(61)

This property is maintained by OC through finding the best Φ′(k + 1, k) and H
′
k such that:

Nk+1 = Φ
′
(k + 1, k)Nk (62)

H
′
kNk = 0, ∀k ≥ 0 (63)

where Nk denotes the system unobservable subspace at timestep k propagated from the initial
chosen N0. Ĥk+1 denotes the measurement Jacobian evaluating with current state estimates at
timestamp tk+1 and tk. Φ̂(k + 1, k) is the standard state translation matrix (26) that propogate
the state from timestamp tk to tk+1. Modificition rules are proposed in OC [7] to maintain the
correction nullspace N̂k at each timestamp and enforce the unobservable directions. Bacically, the
first block column of N̂k in the first constraint Eq. (62) is automatically satisfied because of the
structure of Φ̂ Eq. (26). We need to satisfy the following equation:

Ik+1|k
G R̂Gg

−bGp̂Ik+1|kcGg

−bGv̂Ik+1|kcGg

03

03

 =


Φ̂11 03 03 Φ̂14 03

Φ̂21 I3 I3∆t Φ̂24 Φ̂25

Φ̂31 03 I3 Φ̂34 Φ̂35

03 03 03 I3 03

03 03 03 03 I3




Ik|k−1

G R̂Gg
−bGp̂Ik|k−1

cGg

−bGv̂Ik|k−1
cGg

03

03

 (64)

The following conditions for the first three block rows need to be satisfied. We refer to [7] for more
detailed derivations. From the first block row we get

Ik+1|k
G R̂GgΦ̂11 =

Ik|k−1

G R̂Gg (65)

⇒ Φ̂′11 =
Ik+1|k
Ik|k−1

R̂ (66)
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We use Φ′ij to denote the target OC discrete-time state translation matrix. The second and third
block rows need to satisfy the following equations. Note that these are obtained from the discrete-
time state translation matrix [3].

Φ̂21
Ik|k−1

G R̂Gg = b∆tGv̂Ik|k−1
+ Gp̂Ik|k−1

− Gp̂Ik+1|kc
Gg (67)

Φ̂31
Ik|k−1

G R̂Gg = bGv̂Ik|k−1
− Gv̂Ik+1|kc

Gg (68)

We seek to find Φ
′
21 and Φ

′
31 to ensure the above two constraints are satisfied. Note that both

of them have the form Φ
′
ijaj = bj To find the minimal perturbations, we can solve the following

minimization problem:

min
Φ
′
ij

∥∥∥Φ′ij − Φ̂ij

∥∥∥2
F

(69)

subject to Φ
′
ijaj = bj (70)

where ‖·‖F is the Frobenious norm. The constrained minimization problem will give solution to
construct the optimal OC state translation matrix Φ(k + 1, k)′. After employing the method of
Lagrange multipliers, and solving the corresponding KKT optimality conditions, the optimal Φ

′
ij

can be found as:

Φ
′
ij = Φ̂ij −

(
Φ̂ijaj − bj

)
(a>j aj)

−1a>j (71)

The modified Φ′(k + 1, k) becomes a valid state translation matrix with the semi-group property
[e.g., it satisfies Eq. (58)]. Then we seek to modify the measurement Jacobian Ĥk+1 and find the
one satisfy the second constraint Eq. (63). Given the linearized measurement residual equation
Eq. (44) at timestamp tk+1 we preserve Eq. (63) through follows:

0 = Ĥk+1N̂k+1 (72)

= ∇ĥ
[
bIk+1|k
G R̂(Gp̂fk+1|k −

Gp̂Ik+1|k)c −Ik+1|k
G R̂ 0 0 0

Ik+1|k
G R̂

]


03
Ik+1|k
G R̂Gg

I3 −bGp̂Ik+1|kcGg

03 −bGv̂Ik+1|kcGg

03 03

03 03

I3 −bGp̂fk+1|0c
Gg


(73)

Since Ĥpk+1
= −Ĥfk+1

= −Ik+1|k
G R̂, the first column of Nk+1 is satisfied. Therefore, we then need

to satisfy the second column as:

0 =
[
Ĥθk+1

Ĥpk+1

] [ Ik+1|k
G R̂Gg

−bGp̂Ik+1|kcGg + bGp̂fk+1|0c
Gg

]
(74)

= Âk+1hk+1 (75)

Note that Eq. (74) is of form Ĥk+1hk+1 = 0. We compute the optimal H′k+1 with the similar
minimization problem:

min
A′k+1

∥∥∥A′k+1 − Âk+1

∥∥∥2
F

(76)

subject to A′k+1hk+1 = 0 (77)
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The optimal Jacobian A′k+1 can be computed as:

A′k+1 = Âk+1 − Âk+1hk+1(h
>
k+1hk+1)

−1h>k+1 (78)

The Jacobian H′k+1 can be recovered by A′k+1 as

A′k+1 =
[
Ĥ′θk+1

Ĥ′pk+1

]
(79)

⇒ Ĥ′k+1 =
[
Ĥ′θk+1

Ĥ′pk+1
0 0 0 Ĥ′pfk+1

]
(80)

where Ĥ′pfk+1
= −Ĥ′pk+1

. With the modified Jacobians, we process the filter updated introduced

in Section 1.2.

2.1.2 FEJ-VINS

FEJ-based VINS [9, 12] directly selects the first ever available estimate, denoted by x̄, for each
state variable as linearization points at all future timesteps. During propagation, FEJ evaluates
the state translation matrix Φ̄(k+1, k) with propagated state estimates instead of the updated ones
to ensure Φ̄(k + 1, k) has a valid semi-group property (e.g., satisfies Eq. (58) [10, Lemma 4.2]).

Φ̄(k + 1, k − 1) = Φ̄(k + 1, k)Φ̄(k, k − 1) (81)

The analytical state translation matrix can be derived as:

Φ̄(k + 1, k) =



Φ̄11 03 03 Φ̄14 03 03

Φ̄21 I3 I3∆t Φ̄24 Φ̄25 03

Φ̄31 03 I3 Φ̄34 Φ̄35 03

03 03 03 I3 03 03

03 03 03 03 I3 03

03×3M 03×3M 03×3M 03×3M 03×3M I3M

 (82)

where ∆t = tk+1 − tk and:

Φ̄11 = exp

(
−
∫ tk+1

tk

bω̂(τ)cdτ
)

(83)

Φ̄14 = −
∫ tk+1

tk

Ik+1|k
Iτ

R̂dτ (84)

Φ̄21 = −bGp̂Ik+1|k −
Gp̂Ik|k−1

− Gv̂Ik|k−1
∆t+

1

2
Gg∆t2cIk|k−1

G R̂> (85)

Φ̄24 =

∫ tk+1

tk

∫ θ

t1

G
IsR̂b

Is âc
∫ s

tk

Is
Iτ

R̂dτdsdθ (86)

Φ̄25 = −
∫ tk+1

tk

∫ s

tk

G
Iτ R̂dτds (87)

Φ̄31 = −bGv̂Ik+1|k −
Gv̂Ik|k−1

+ Gg∆tcIk|k−1

G R̂> (88)

Φ̄34 =

∫ tk+1

tk

Is
G R̂>bIs âc

∫ s

tk

Iτ
Is

R̂>dτds (89)

Φ̄35 = −
∫ tk+1

tk

Iτ
G R̂>dτ (90)
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FEJ also selects the first state estimates x̄ to construct measurement Jacobian H̄k+1 and its lin-
earized residual as:

r̄k+1 ' z− h(x̂k+1|k) (91)

'
[
H̄Ik+1

H̄fk+1

] [x̃Ik+1|k

x̃fk+1|k

]
+ nk+1 (92)

= H̄k+1x̃k+1|k + nk+1 (93)

where H̄k+1 denotes the Jacobian evaluated at x̄k+1|k. Note that IMU pose is only used one-time
for system linearization, thus x̂Ik+1|k = x̄Ik+1|k . Assume the feature is first detected at timestep t0,

as it has zero dynamics, we have Gp̄fi = Gp̂fi,1|0 . Therefore, H̄k+1 can be computed as:

H̄k+1 =
[
H̄Ik+1

H̄fk+1

]
(94)

= ∇h̄i

[
H̄θk+1

H̄pk+1
03×3 03×3 03×3

∣∣∣ . . . H̄fi,k+1
. . .

]
(95)

where

H̄θk+1
= bIk+1|k

G R̂
(
Gp̂fi,1|0 −

Gp̂Ik+1|k

)
c (96)

Ĥpk+1
= −H̄fk+1

= −Ik+1|k
G R̂ (97)

∇h̄i =
1

z̄i2

[
z̄i 0 −x̄i
0 z̄i −ȳi

]
C
I R (98)

Since there are no linearization point changes,the unobservable subspace dimensions are automat-
ically preserved, which can be verified as follows.

Nk+1 = Φ̄(k + 1, k)Nk (99)

H̄kNk = 0 (100)

⇒ H̄k+1Φ̄(k + 1, 0)N0 = 0, ∀k ≥ 0 (101)

We now show that the underlying FEJ assumption can possibly incur large linearization errors by
re-deriving the linearized measurement with a first order Taylor series expansion at x̄ (subscript
k + 1 dropped for clarity):

z ' h(x̄) + H̄(x� x̄) + n (102)

= h(x̄) + H̄(x̂� x̄) + H̄(x� x̂) + n (103)

' h(x̂) + H̄x̃ + n (104)

FEJ estimator uses Eq. (104) during update (both residual and error state are at the current
estimates). Although H̄ ensures the system unobservable subspace, it might lead the system to
suffer from un-optimal updates due to poor x̄. Specifically, FEJ assumes the following:

h(x̂) ' h(x̄) + H̄(x̂� x̄) (105)

This approximation can introduce extra linearization errors caused by the estimates change (x̂� x̄),
especially when poor initial estimates x̄ are used.
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2.2 FEJ2 Methodology

The above estimator designs from observability perspective avoid spurious information erroneously
flooding into the unobservable directions of the state space, thus improving consistency. As they
rely on initial estimates to construct Jacobians, the estimator may suffer from the poor state
initialization. To address this issue, the proposed FEJ2 consistently propagates state forward
leveraging either FEJ or OC but improves the update step. We seek to linearize the system at the
current state estimates x̂ for the smallest linearization errors and use the first-estimates Jacobian
H̄ to avoid extra information gain along unobservable directions.

To achieve this, FEJ2 derives a more accurate linear model to approximate the nonlinear system
as:

zk+1 ' h(x̂k+1) + Ĥk+1x̃k+1 + nk+1 (106)

= h(x̂k+1) + (H̄k+1 + Ĥk+1 − H̄k+1)x̃k+1 + nk+1 (107)

r̂k+1 = zk+1 − h(x̂k+1) (108)

' H̄k+1x̃k+1 + ∆Hk+1x̃k+1 + nk+1 (109)

where ∆Hk+1 = Ĥk+1 − H̄k+1 indirectly captures linearization points change between first and
current state estimates. Therefore, we project Eq. (109) onto the left nullspace of ∆H using the
QR decomposition, i.e., ∆U>k+1∆Hk+1 = 0.

∆Hk+1 =
[
∆Qk+1 ∆Uk+1

] [∆Tk+1

0

]
(110)

= ∆Qk+1∆Tk+1 (111)

where
[
∆Qk+1 ∆Uk+1

]
is a unitary matrix, columns of ∆Qk+1 and ∆Uk+1 form bases for the

range and nullspace of ∆Hk+1, respectively. ∆Tk+1 is an upper triangular matrix. Multiplying
∆U>k+1 to Eq. (109) resulting the measurement residual r∗k+1 and Jacobian H∗k+1 as:

∆U>k+1r̂k+1 = ∆U>k+1H̄k+1x̃k+1 + ∆U>k+1∆Hk+1x̃k+1 + ∆U>k+1nk+1

= ∆U>k+1H̄k+1x̃k+1 + ∆U>k+1nk+1 (112)

⇒ r∗k+1 = H∗k+1x̃k+1 + n∗k+1 (113)

where nk+1 is zero mean independent and identically distributed (i.i.d) Gaussian noise with covari-
ance Rk+1 [13] and n∗ ∼ N (0,∆U>k+1Rk+1∆Uk+1). We then update the filter with the modified
r∗k+1 and H∗k+1. An overview of different estimators is given in Algorithm 1.

As evident from the above, the QR factorization is leveraged to find the left nullspace ∆U and
get rid of ∆H via ∆U>∆H = 0 (subscript k+1 dropped for clarity). In order to find such nullspace,
∆Hm×n is required to be full column rank, where m and n are the size of measurements and states,
respectively. Assuming rank(∆H) = n, by the rank-nullity theorem, we find nullity(∆U) = m−n,
that is, the dimension of the left nullspace dim(∆U) and also the compressed measurement size [r∗

in Eq. (109)] after the nullspace operation. While this is the case for many multi-view scenarios,
some systems may have less visual observations than the dimensions of the state (i.e., m ≯ n). For
example, assuming M environmental features are observed by the monocular camera Eq. (37), we
can find the size of measurements m = 2M , while the state consists the 6 d.o.f IMU pose and the
3D feature positions, thus n = 6 + 3M . We notice that 2M ≯ 6 + 3M,∀M ≥ 0. If this occurs, it is
not difficult to address in an engineering sound way as discussed in Section 2.4.2.
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2.3 FEJ2 Properties

We now show that FEJ2 not only preserves the proper observability properties but compensates
for large linearization errors as in the FEJ-based estimators. Note that, in what follows, we drop
off the subscripts to make the ensuring derivations more concise.

Lemma 2.1. FEJ2 employs a linearized system model that has an unobservable subspace of correct
dimensions and structure, and shares the same (initial) nullspace of the observability matrix as the
FEJ and OC.

Proof. The observability matrix of the FEJ (Ō) and OC (O′) assume the following conditions:

OC: O′N0 = 0 (114)

FEJ: ŌN0 = H̄Φ̄N0 = 0 (115)

where N0 is the selected initial system unobservable subspace Eq.(61). It is not difficult to show
that FEJ2 shares the same structure of observability matrix with FEJ and OC:

O∗N0 = H∗Φ̄N0 = ∆U>H̄Φ̄N0 = ∆U>ŌN0 = 0

This proves that FEJ2 keeps the correct unobservable subspace.

Lemma 2.2. FEJ2 has larger covariance estimates than FEJ.

Proof. Without losing generality, we assume the noise covariance is isotropic and identical (i.e.,
R = I). After the QR factorization for ∆H as in Eq. (110), due to the unitary property we have
∆Q∆Q> + ∆U∆U> = I. The information matrix of FEJ2 can then be derived as:

Σ∗ = H∗>H∗ (116)

= (∆U>H̄)>(∆U>H̄) (117)

= H̄>H̄− H̄>∆Q∆Q>H̄ (118)

, Σ̄−∆Σ (119)

Notice that Σ̄ = H̄>H̄ is the FEJ information matrix, ∆Σ is a positive semidefinite matrix. Eq.
(119) shows FEJ2 deflates the information matrix of FEJ, which, in turn, inflates the covariance
matrix P of system since P = Σ−1.

Basically, FEJ2 projects the measurement residual function onto the left nullspace of ∆H.
As ∆H is the difference between Jacobians evaluate with x̄ and x̂, a general consideration is it
represents the linearization errors. In addition, since Ĥ = H̄ + ∆H, where H̄ ensures that the
linearized system keeps the same observability property as the underlying nonlinear system, ∆H
causes extra information gain along unobservable directions. At this point, we see that FEJ2 is
a more consistent and accurate estimator which guards the system observability properties and
better models the system uncertainty compared to FEJ.

2.4 FEJ2 Applications

FEJ2 can be implemented to different VINS frameworks as a base estimator design. In this section
we continue to address the FEJ2 nullpace projection operation and explain how to utilize FEJ2
idea into SLAM and multi-state constraint Kalman filter (MSCKF) based visual-inertial odometry
(VIO) [14].
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Algorithm 1 VINS Algorithm Overview

Propagation
Input : IMU measurement, syetem state estimate x̂k|k and covariance P̂k|k
Output: system propagated state estimate x̂k+1|k and covariance P̂k+1|k

•Propagate system state estimate via Eq.(3)-(8)
•Compute the state translation matrix Φ(k + 1, k)

If do Standard
Φ(k + 1, k) = Φ̂(k + 1, k) via Eq.(26)

else
Φ(k + 1, k) = Φ̄(k + 1, k) via Eq. (82)

•Propagate the state covariance matrix via Eq.(35)
P̂k+1|k = Φ(k + 1, k)P̂k|k ΦI(k + 1, k)> + GkQkG

>
k

Update
Input : Sensor observations, propogated state estimate x̂k+1|k and covariance P̂k+1|k
Output: System updated state estimate x̂k+1|k+1 and covariance P̂k+1|k+1

•Receive feature measurements zk+1

Note that we assume all features have been observed and initialized before
•Compute the measurement residual rk+1 and the Jacobian Hk+1

if do Standard
- Linearize the measurement function at the best state estimate

rk+1 = r̂k+1 , Hk+1 = Ĥk+1 via Eq. (44)
else if do FEJ

- Linearize the measurement function at the first state estimate
rk+1 ' r̂k+1 , Hk+1 = H̄k+1 via Eq. (93)

else if do OC
- Linearize the measurement function at the best state estimate

Get rk+1 = r̂k+1 and Ĥk+1

- Modify Ĥk+1 via Eq. (62) (63). Get Hk+1 = H
′
k+1.

else if do FEJ2
- Using linearized standard and FEJ measurement residual functions, Eq. (44)(93)

to find the linearized FEJ2 measurement residual equation Eq. (109).
- Project the measurements to the left nullspace of ∆H.

Get rk+1 = r∗k+1,Hk+1 = H∗k+1

•Update the filter via Eq. (52)-(54)

Kk+1 = Pk+1H
>
k+1

(
Hk+1Pk+1H

>
k+1 + Rk+1

)−1
xk+1|k+1 = xk+1|k �Kk+1rk+1

Pk+1|k+1 = Kk+1Hk+1Pk+1|k
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2.4.1 FEJ2-EKF SLAM

In the SLAM system, the state vector includes the current IMU state and the features Eq. (2). The
standard measurement Jacobians are showed in Eq. (96). To simplify the discussion we assume the
robot directly receives relative position measurements of features as:

zi = Ck+1|kpfi = C
I R

Ik+1|k
G R

(
Gpfi,k+1|k −

GpIk+1|k

)
+ CpI + ni,k+1 (120)

Assume there are M features in total that can be observed by the robot at every timestep. Stacking
all features measurements at timestep tk+1 we will get:

zk+1 =

 z1
...

zM

 =


Ck+1|kpf1

...
Ck+1|kpfM

+ nk+1 (121)

Note that given this measurement model we have ∇hi = I; Given the standard Jacobian Ĥk+1

Eq. (48) and first-estimates Jacobian H̄k+1 Eq. (95), we can get the structure of ∆H as:

∆H =


∆Hθ 0

. . .
...

... 0

∆Hθ 0
. . .


m×n

(122)

As ∆Hθ is the only non-zero matrix block, we apply the FEJ2 nullspace operation [see Eq. (113)]
to ∆Hθ instead of the full state. It relaxes the matrix rank requirement and only needs m > 3,
which is common in practice.

2.4.2 FEJ2-MSCKF VIO

In the famous MSCKF VIO framework [15], the state vector includes the latest IMU state xI and
a sliding window of cloned poses [15]. For those MSCKF features [16] which will be marginalized
from state vector immediately, we simply perform FEJ updates.

More attentions are paid to the SLAM features which can be reliably tracked longer than the
current sliding window. Those features are initialized into the active state vector and used for
update until got lost. The state vector at timestep tk+1 thus include:

xk+1 =
[
x>Ik+1

x>clone

∣∣∣ x>fk+1

]
(123)

=
[
x>Ik+1

x>clone | · · · Gp>fi,k+1
· · ·

]
(124)

where xclone refers to all the active cloned poses. As shown in [9], assume ith feature is processed
at timestep αi + i and it has been initialized into state vector with the triangulated value Gp̄fi .

The Ĥk+1 and H̄k+1 with respect to the IMU current IMU state and feature can be computed as:

∇ĥi =
1

ẑi
2

[
ẑi 0 −x̂i
0 ẑi −ŷi

]
C
I R

Ĥθk+1
= bIk+1|αi

G R̂
(
Gp̂fk+1|αi

− Gp̂Ik+1|αi

)
c

Ĥp = −Ĥf = −Ik+1|αi
G R̂

∇h̄i =
1

z̄i2

[
z̄i 0 −x̄i
0 z̄i −ȳi

]
C
I R

H̄θk+1
= bIk+1|k

G R̂
(
Gp̄fi −

Gp̂Ik+1|k

)
c

H̄p = −H̄f = −Ik+1|k
G R̂
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Figure 2: A typical run for proposed estimators on udel gore dataset.

As normally the measurements from latest image just contain the Jacobians for the current IMU
pose and the feature states, the structure of ∆H with respect to xIk+1

and SLAM features xf can
be simplified as:

∆Hk+1 =

∆Hθ1 ∆Hp1 ∆Hf1
...

...
. . .

∆HθM ∆HpM ∆HfM

 (125)

=
[
∆Hθ ∆Hp ∆Hf

]
m×n (126)

=
[
∆HI ∆Hf

]
(127)

However, as mentioned before, ∆H can not be of full column rank with monocular camera mea-
surements. Even though the left nullspace for ∆H exists with stereo measurements, numerical
issue happens occasionally from our experiences. Especially, ∆Hf is a small and sparse matrix
[see Eq. (96)], each block row only contains one non-zero block to the i-th feature, it could lead
to numeral instability when employing QR factorization. Another potential challenge of applying
FEJ2 is that, the size of measurements reduces from m to m − n after the nullspace operation
Eq. (113), which might cause some geometrical information loss. We will further investigate in the
future.

To this end, we propose a flexible and stable FEJ2 design, select to project on the left nullspace
of ∆HI , which is normally dense and tall, instead of the full error Jacobian.

3 Monte-Carlo Simulations

A series of Monte-Carlo simulations for both SLAM and MSCKF-VIO were conducted under various
conditions to validate the preceding theoretical analyses and demonstrate the capability of FEJ2.
Note that in the following sections, we use STD to represent standard estimator in the tables and
figures.
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3.1 EKF SLAM

We first ran a SLAM simulation (as introduced in Section 2.4.1) where a robot following a 3D
trajectory as shown in Figure 2 and continuously observes fixed number of landmarks at every
timestep. Accordingly, landmarks will be initialized into state vector at the first time. The Open-
VINS simulator [16] is leveraged to simulate IMU readings and 20 environmental features. The
IMU readings are used to propagate the robot state forward. In this simulation, robot continuously
records a pair of relative position measurements of 20 landmarks with noise standard deviation
from 1% to 22% of the robot-to-landmark distance. Table 1 reports the averaged values of Root
Mean Square Error (RMSE) [17] and Normalized Estimation Error Squared (NEES) [18] over 50
Monte-Carlo runs. The 8 subplots in Figure 3 shows the average RMSE for IMU orientation and
position.

Table 1: The average RMSE and NEES over 50 Monte-Carlo simulations for the relative position measurement model
with different estimators.

Noise
Standard

Derivation
Estimator

RMSE Ori.
(deg)

RMSE Pos.
(m)

NEES Ori. NEES Pos.

1%

STD 1.315 0.266 4.055 4.582
OC 0.266 0.184 2.404 3.435
FEJ 0.264 0.181 2.423 3.330
FEJ2 0.259 0.179 2.342 3.207

14%

STD 1.370 0.320 3.930 4.740
OC 0.365 0.255 2.368 3.844
FEJ 0.366 0.247 2.411 3.628
FEJ2 0.352 0.244 2.282 3.502

18%

STD 1.458 0.376 4.086 4.896
OC 0.472 0.323 2.397 4.119
FEJ 0.491 0.311 2.493 3.887
FEJ2 0.446 0.305 2.287 3.692

22%

STD 1.512 0.430 4.156 4.993
OC 0.582 0.390 2.459 4.367
FEJ 0.670 0.377 2.666 4.156
FEJ2 0.538 0.363 2.317 3.486
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Figure 3: The average RMSE and NEES over 50 Monte-Carlo simulations under different measurement noises
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Table 2: Key simulation / estimator parameters for monocular simulation (left) and stereo simulation (right).

Parameter Value Parameter Value

IMU Freq. (hz) 400 Camera Freq. (hz) 10
No. SLAM Feat. 50 Camera Clones 11

Gyro. White Noise 1.6968e-04 Gyro. Rand. Walk 1.9393e-05
Accel. White Noise 2.0000e-03 Accel. Rand. Walk 3.0000e-03

Parameter Value Parameter Value

IMU Freq. (hz) 400 Camera Freq. (hz) 10
No. SLAM Feat. 50 Camera Clones 11

Gyro. White Noise 1.6968e-04 Gyro. Rand. Walk 1.9393e-05
Accel. White Noise 2.0000e-03 Accel. Rand. Walk 3.0000e-03

It is clear from the results in Table 1 that FEJ2 achieves the smallest RMSE compared to
other estimators, thus is the most accurate estimator design. Ideally, a consistent estimator should
have position and orientation NEES values smaller or close to 3. Table 1 shows the position and
orientation NEES values of FEJ2, similar to FEJ and OC, are around 3, which verify our analysis
that FEJ2 is a consistent estimator. With a further observation of the results, we notice that both
the orientation and position NEES values of FEJ2 are smaller than those of OC and FEJ, which
further verify our analysis that FEJ2 has larger covariance than FEJ. Hence, FEJ2 should be more
conservative and makes the system less sensitive to noises.

3.2 FEJ2 MSCKF VINS

In this section, we present the estimation performance within a hybrid MSCKF-based VIO sys-
tem [19, 16] using different simulation setups (shown in Table 2) and measurement noises. Specifi-
cally, we first simulate monocular camera measurements with relative low IMU noises, and then a
stereo camera with increased IMU noises to further challenge the system.

Figure 4: IMU pitch angle errors (solid lines) and ±3σ bounds (dashed lines) for udel gore simulations using stereo
measurements and 2 pixel measurement noise with different estimators. Note that the ±3σ bounds of the OC (black)
and the FEJ (red) are almost identical.

Figure 4 shows the IMU pitch angle estimation error and the corresponding 3σ bounds of
uncertainty with stereo camera using different VINS estimators for a single run. As evident, the
standard (STD) estimator is inconsistent with estimation errors frequently out of the 3σ bounds.
While the errors for OC, FEJ and FEJ2 are well within their 3σ bounds, indicating their consistency,
the 3σ bounds of FEJ2 are slightly broader than the others, showing that FEJ2 is more conservative.
These results strengthen our claim that FEJ2 has larger system covariance estimation (Lemma 2.2).

50 runs Monte-Carlo simulations are also conducted. Figure 5 and Figure 6 shows the averaged
NEES and RMS errors of robot pose with monocular and stereo measurements with different noises.
While Table 3 presents the corresponding average values of RMSE and NEES. Note that in stereo
and monocular simulations, different IMU noises are used as showed in Table 2.

From the above results we notice that when measurement noise is small, the average RMSE of
OC, FEJ and FEJ2 are very similar to each other since the linearization errors might be small.
In the meanwhile, standard (STD) VINS, which is inconsistent, performs the worst with largest
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Table 3: The average RMSE and NEES over 50 Monte-Carlo simulations under different measurement noises with
monocular measurements (top) and stereo measurements (bottom).

(a) Monocular measurement simulation

Noise
(pix.)

Estimator
RMSE Ori.

(deg.)
RMSE Pos.

(m)
NEES Ori. NEES Pos.

1

STD 0.412 0.130 23.874 4.911
OC 0.242 0.119 3.290 3.540
FEJ 0.242 0.120 3.284 3.617
FEJ2 0.238 0.118 3.150 3.443

2

STD 1.078 0.242 114.724 7.578
OC 0.453 0.206 3.479 4.074
FEJ 0.490 0.198 3.759 3.902
FEJ2 0.446 0.192 3.176 3.459

3

STD 2.139 0.402 407.221 13.212
OC 0.716 0.301 3.964 5.051
FEJ 0.861 0.289 4.965 4.763
FEJ2 0.650 0.264 3.198 3.581

(b) Stereo measurement simulation

Noise
(pix.)

Estimator
RMSE Ori.

(deg.)
RMSE Pos.

(m)
NEES Ori. NEES Pos.

1

STD 0.344 0.109 15.447 4.874
OC 0.257 0.100 3.599 3.416
FEJ 0.256 0.100 3.438 3.322
FEJ2 0.238 0.095 3.324 2.965

2

STD 1.352 0.207 24.395 5.795
OC 0.472 0.194 3.851 3.920
FEJ 0.471 0.193 3.668 3.782
FEJ2 0.429 0.182 3.420 3.227

3

STD 0.344 0.109 15.447 4.874
OC 0.257 0.100 3.599 3.416
FEJ 0.256 0.100 3.438 3.322
FEJ2 0.238 0.095 3.324 2.965
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Figure 5: The average RMSE and NEES over 50 Monte-Carlo simulations under different measurement noises (monoc-
ular simulation)
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Figure 6: The average RMSE and NEES over 50 Monte-Carlo simulations under different measurement noises (stereo
simulation)
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Table 4: The average RMSE and NEES over 50 Monte-Carlo simulations for 8 pixel measurement noise with monocular
measurements.

Noise
(pix.)

Estimator
RMSE Ori.

(deg.)
RMSE Pos.

(m)
NEES Ori. NEES Pos.

8

STD. - - - -
OC 3.195 1.104 12.993 25.887
FEJ 4.711 1.608 32.096 55.259
FEJ2 2.258 0.677 5.980 6.387

estimation errors. When we increase measurement noises, the linearization errors will become more
influential and we can observe more apparent accuracy improvements of the FEJ2 compared to
other VINS estimators.

We also test with unrealistic noise (i.e., 8 pixel), FEJ and OC diverge quickly due to the large
linearization errors, while FEJ2 can still work and outperform the others. Q

Figure 7: The average RMSE and NEES over 50 Monte-Carlo simulations for 8 pixel measurement noise with
monocular measurements.

4 Real-World Experiments

Building upon OpenVINS [16], we further test our FEJ2 based VINS estimators on the Euroc
Mav dataset [20] and TUM-VI dataset [21] with both monocular and stereo configurations. In the
experiments, we keep 11 clones and at most 50 SLAM features in the state vector. For other tracked
features we perform MSCKF update and marginalize them out of state vectors. All estimators were
run ten times on each dataset to compensate for randomness and the averaged absolute trajectory
error (ATE) [17] values are reported . The results are shown in Table 5, it is clear that OC, FEJ and
FEJ2 produce smaller ATE than the standard EKF. Although these three consistent estimators are
performing very close to each other, FEJ2 still achieves better accuracy on average, especially in
monocular camera scenarios. Compared with stereo, FEJ and OC are more likely to suffer from bad
feature triangulation due to less visual constraints in monocular case. This would lead to relatively
larger linearization errors, which FEJ2 has focused on, hence, this verifies that FEJ2 can achieve
better accuracy.

These results, along with those from Monte-Carlo simulations presented in the previous section,
support that our proposed FEJ2 improves the VINS estimator in both consistency and accuracy.
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Table 5: Ten runs absolute trajectory error (ATE) for each algorithm in units of degree/meters.

Dataset V1 01 easy V1 02 medium V1 03 difficult V2 01 easy V2 02 medium V2 03 difficult

Mono

STD 0.956/0.076 1.783/0.080 2.638/0.074 0.951/0.098 1.856/0.085 1.415/0.154
OC 0.554/0.077 0.615/0.071 2.933/0.068 0.880/0.093 1.595/0.077 1.835/0.188
FEJ 0.872/0.056 0.574/0.052 2.079/0.096 0.928/0.092 1.599/0.074 1.874/0.168
FEJ2 0.679/0.053 0.564/0.059 2.346/0.061 0.791/0.101 1.233/0.047 1.808/0.146

Stereo

STD 0.792/0.061 1.958/0.059 2.551/0.053 1.078/0.055 1.693/0.064 2.337/0.077
OC 0.615/0.071 1.772/0.046 2.468/0.045 1.098/0.059 1.231/0.051 1.052/0.061
FEJ 0.547/0.052 1.702/0.079 2.498/0.045 1.172/0.058 1.268/0.049 1.118/0.058
FEJ2 0.564/0.059 1.770/0.045 2.503/0.047 0.975/0.053 1.202/0.047 1.101/0.062

Dataset MH 01 easy MH 02 easy MH 03 medium MH 04 difficult MH 05 difficult

Mono

STD 1.958/0.246 2.337/0.275 1.355/0.155 1.640/0.306 1.872/0.438
OC 1.346/0.190 1.121/0.161 1.580/0.162 1.114/0.277 1.124/0.421
FEJ 1.556/0.107 0.920/0.156 1.204/0.142 1.109/0.261 1.212/0.347
FEJ2 1.503/0.098 0.740/0.105 1.137/0.142 0.783/0.282 1.145/0.391

Stereo

STD 1.656/0.183 2.185/0.215 1.641/0.115 1.331/0.223 2.042/0.352
OC 1.606/0.123 1.136/0.161 1.007/0.183 1.151/0.289 0.899/0.288
FEJ 1.102/0.117 0.968/0.142 1.157/0.157 1.090/0.214 1.288/0.208
FEJ2 1.193/0.070 1.366/0.174 1.824/0.138 1.038/0.273 1.124/0.163

Dataset room1 room2 room3 room4 room5 room6

Mono

STD 2.088/0.084 -/- 5.731/0.133 1.449/0.056 1.032/0.091 -/-
OC 0.811/0.075 1.205/0.091 1.659/0.101 0.789/0.050 1.161/0.092 2.642/0.087
FEJ 0.906/0.074 1.016/0.097 1.287/0.085 0.857/0.048 1.401/0.093 1.301/0.046
FEJ2 0.825/0.072 1.331/0.096 1.316/0.086 0.845/0.045 1.182/0.084 1.277/0.128

Stereo

STD 1.536/0.066 -/- 6.303/0.127 3.220/0.066 0.895/0.103 6.019/0.101
OC 0.788/0.054 0.904/0.060 1.396/0.064 0.880/0.041 0.928/0.099 1.635/0.048
FEJ 0.784/0.056 0.865/0.061 1.336/0.065 0.890/0.040 1.014/0.098 1.492/0.051
FEJ2 0.864/0.058 1.397/0.063 1.261/0.068 0.855/0.038 1.021/0.097 1.225/0.039
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