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Abstract

In this paper, we study state estimation of multi-visual-inertial systems (MVIS) and de-
velop sensor fusion algorithms to optimally fuse an arbitrary number of asynchronous inertial
measurement units (IMUs) or gyroscopes and global and/or rolling shutter cameras. We are
especially interested in the full calibration of the associated visual-inertial sensors, including
the IMU/camera intrinsics and the IMU-IMU/camera spatiotemporal extrinsics as well as the
image readout time of rolling-shutter cameras (if used). To this end, we develop a new ana-
lytic combined IMU integration with inertial intriniscs – termed ACI3 – to pre-integrate IMU
measurements, which is leveraged to fuse auxiliary IMUs and/or gyroscopes alongside a base
IMU. We model the multi-inertial measurements to include all the necessary inertial intrinsic
and IMU-IMU spatiotemporal extrinsic parameters, while leveraging IMU-IMU rigid-body con-
straints to eliminate the necessity of auxiliary inertial poses and thus reducing computational
complexity. By performing observability analysis of MVIS, we prove that the standard four
unobservable directions remain – no matter how many inertial sensors are used, and also iden-
tify, for the first time, degenerate motions for IMU-IMU spatiotemporal extrinsics and auxiliary
inertial intrinsics. In addition to the extensive simulations that validate our analysis and al-
gorithms, we have built our own MVIS sensor rig and collected over 25 real-world datasets to
experimentally verify the proposed calibration against the state-of-the-art calibration method
Kalibr. We show that the proposed MVIS calibration is able to achieve competing accuracy with
improved convergence and repeatability, which is open sourced to better benefit the community.

1 Introduction

A camera can provide 2 degree-of-freedom (DoF) texture-rich images of the environment while an
inertial measurement unit (IMU), which consists of a gyroscope and an accelerometer, can read
high-frequency angular velocity from its gyroscope and linear acceleration from its accelerometer.
The combination of cameras and IMUs have become prevalent in autonomous vehicles and mobile
devices in the recent decade due to their decrease in cost and complementary sensing nature. This
has lead to a significant progress of developing visual-inertial navigation system (VINS) algorithms
focusing on efficient and accurate pose estimation [1]. While many works have shown accurate
estimation for the minimal sensing case of a single camera and IMU [2, 3, 4, 5, 6], it is known that
the inclusion of additional sensors can provide improved accuracy due to additional information
and robustness to single sensor failure cases [7, 8]. Recently, multi-visual-inertial systems (MVIS)
– which uses multiple IMUs and multiple cameras for 6 DoF pose tracking and 3D mapping – have
been deployed to micro aerial vehicles (MAVs), AR/VR devices and autonomous vehicles, thus
the need for accurate sensor calibration and state estimation algorithms continues to grow. We
have previously investigated the single IMU-Camera calibration case [9], showing that even a small
perturbation to calibration parameters may cause significant trajectory accuracy loss, which calls
for accurate calibration of MVIS.

Regarding state estimation, many works have explored to use multiple vision sensors for better
VINS performance [10, 11, 7, 12, 13, 14, 15]. In particular, [10], [11] and [15] have shown that stereo
camera or multiple cameras can achieve better pose accuracy or lower the uncertainties of IMU-
Camera calibration. Only a few works recently investigate multiple inertial sensor fusion for VINS
[16, 17, 18, 19, 20], showing that the system robustness and pose accuracy can be improved by fusing
additional IMUs. For optimal fusion of multiple asynchronous visual and inertial sensors for MVIS,
it is crucial to provide accurate full-parameter calibration for these sensors, which include: (i) IMU-
IMU/camera rigid transformation, (ii) IMU-IMU/camera time offset, (iii) IMU inertial intrinsics,
including scale/skewness correction for gyroscope/accelerometer, g-sensitivity, and rotation between
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gyroscope and accelerometer , (iv) camera projection/distortion model parameters, and (v) image
readout time of rolling shutter (RS) cameras.

While there exists literature regarding to multi-camera and multi-IMU navigation systems [21,
22, 16, 6, 8, 15, 23], most of these works do not support full parameter calibration. For example, only
synchronized multiple global shutter (GS) cameras are supported in [6, 15], which cannot handle
measurements from multiple asynchronous inertial sensors or rolling shutter cameras . Only rigid
transformations for multiple IMUs can be calibrated in the work of [16]. Although the work [23]
can handle the spatiotemporal calibration for asynchronous cameras and IMUs, rolling shutter (RS)
calibration and IMU/camera intrinsic calibration are missing. The work [8] can calibrate multiple
asynchronous RS cameras but the IMU intrinsic parameters (including scale/skewness correction
and g-sensitivity) cannot be estimated. Although the work [21] and its extension [22] support the
spatiotemporal calibration for multiple IMUs and cameras with their intrinsics, they do not support
hybrid calibration of global and rolling shutter (GS/RS) cameras. The IMU-IMU or IMU-Camera
time offsets cannot be jointly optimized, either. None of the aforementioned works can perform
joint optimization of all the mentioned calibration parameters.

In this paper, we are aiming for full-parameter joint calibration of MVIS, including IMU-
IMU/Camera spatiaotemporal calibration, IMU/Camera intrinsics and rolling shutter readout time.
The joint calibration can benefit the sensor fusion (e.g., VINS, MVIS) in several aspects. [24] showed
that calibrating the full-parameter model when running VINS can improve the system accuracy
than calibrating partial IMU-Camera model parameters. [25] showed that jointly calibrating rolling
shutter and IMU intrinsics can lower down image reprojection errors, and hence, improve the pose
accuracy. [22] showed in their experiments that joint IMU intrinsic calibration can also improve
the IMU-Camera extrinsic calibration. Joint full-parameter calibration for a multi-sensor system
might be more convenient and efficient than calibrating each sensor individually. For example, if
calibrating the IMU intrinsics, a turntable with a special fixture for an IMU might be needed for
accurate calibration. Several data collections might also be performed to make sure all the IMUs
can be reliably calibrated. The joint sensor calibration algorithm can calibrate the parameters of
all the IMUs with one data collection without special setup for the IMUs. Joint calibration for a
multi-sensor system can also leverage more information (e.g., multi-sensor rigid-body constraints,
data association from multiple cameras) to improve calibration performances. [15] showed that joint
calibration of a multiple-camera system can greatly reduce the camera related calibration uncertain-
ties than a single camera system. Note that in the following paper, we refer to the MVIS containing
multiple IMUs (IMU-IMU) or at least one IMU with additional gyroscopes (IMU-gyroscope). We
specifically mention the gyroscopes, because they can read the angular velocities for the same sensor
platform to which they are rigidly attached. Hence, it is straightforward to improve orientation esti-
mation by fusing these gyroscopes readings with pretty efficient algorithms [18]. Even with multiple
extra IMUs, we can fuse only the gyroscopes from these IMUs for the consideration of saving the
computation complexity by not processing the noisy acceleration measurements.

Moreover, no observability analysis focusing on MVIS is performed. In particular, the degen-
erate motion study of the spatiotemporal calibration for IMU-IMU/gyroscope is missing from the
literature , which greatly limits our understanding of such kind system.

To fill this gap, we first leverage our previous work on analytic combined IMU integration [26]
to derive a new IMU integrator for IMU intrinsic calibration (i.e., ACI3). Different from previous
IMU pre-integration algorithms [4, 27, 28], ACI3 models accurate covariance correlations between
IMU navigation states (IMU pose and velocity) and biases. It also analytically computes Jacobians
regarding to both the biases and IMU intrinsics. Based on this, we design a novel algorithm to fuse
multiple IMU/gyroscope measurements by using the rigid body constraints between these inertial
sensors. A complete MVIS algorithm is developed , which can truly jointly estimate all the calibra-
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tion parameters (spatiotemporal parameters between IMU-IMU/camera, IMU/camera intrinsics,
readout time) within a batch nonlinear least squares (NLS) optimization framework. Based on the
linearized system models, observabiltiy analysis of MVIS with full-calibration is performed. We
show that all these calibration parameters are observable given fully excited motions, and also, for
the first time, identify the degenerate motions for IMU-IMU/gyroscope spatiotemporal calibration.
By building our own MVIS sensor rig with multiple IMUs and GS/RS cameras for data collection,
we validate the proposed system against the state-of-art Kalibr [21, 22]. In particular, the main
contributions of this work are the following:

• We propose an optimization-based multi-visual-inertial (IMU and/or gyroscope) sensor cal-
ibration algorithm, which jointly estimates all spatiotemporal (including RS readout time)
and intrinsic parameters for an arbitrary number of visual and inertial sensors.

• Building upon our prior work [26], we develop a new analytic combined IMU integrator with
inertial intrinsics (i.e., ACI3), which corrects both mean and covariance of pre-integrated
IMU measurements when IMU bias and intrinsic linearization changes. We also propose an
auxiliary IMU fusion algorithm that allows for both the extrinsic and intrinsic calibration for
multiple IMU sensors.

• We perform comprehensive observability analysis for the MVIS with full-parameter calibra-
tion, and, for the first time, identify the degenerate motions related to IMU-IMU/gyroscope
calibration. We show that under one-axis rotation motion, the rotation between IMU and gy-
roscope is unobservable along rotation axis. We also show that under constant local angular
and linear velocity, the time offset between IMUs is observable, which counters our intuitions.

• We conduct extensive simulations with three typical motion profiles. The simulation results
confirm that we are able to recover all visual and inertial calibration parameters with the
proposed MVIS in the fully-excited motion case. Specifically, 25 datasets collected by our
self-made sensor rig are also used for evaluating the proposed MVIS against state-of-art cali-
bration methods, and the results prove that the proposed approach achieves comparable accu-
racy and better repeatability. The identified degenerate motions for the pertinent calibration
parameters are also verified through both simulation and real-world experiments.

The paper is organized as follows: after briefly reviewing the related works in the next section,
we present the proposed MVIS estimation framework in Section 3. The visual-inertial measurement
constraints used by the system are explained in Sections 4-7, while in Sections 8-9 we present the
observability analysis and identified degenerate motions. We validate our analysis and algorithms
in Sections 10-11 and conclude the paper in Section 12.

2 Related Work

While there exists rich literature in VINS [1], in the following, we only review the works closely
related to MVIS and the calibration of MVIS, which can be categorized as: (i) multiple inertial
sensors aided navigation systems, (ii) multiple cameras aided inertial navigation systems, and (iii)
multi-camera and multi-IMU navigation systems.

2.1 Multi-inertial navigation

There are a few works using multiple inertial sensors to improve navigation system. [19] proposed to
use triple IMUs with wheel encoders to improve dead reckoning and showed that the drifting rates
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continue dropping as the number of used IMU increases. [20] proposed to use best axes composition
(BAC) algorithm to select the best fitting data from multiple inertial sensors to avoid systematic
errors when fusing multiple customer grade IMUs. They showed that the inertial navigation system
performances can be improved by increasing the number of used inertial sensors. [16] fused multiple
IMUs through reformulating pre-integration [4] by transforming the auxiliary inertial readings into
the base inertial frame. However, they relied on the numerical computation of angular accelerations
to perform this transformation. They did not estimate the IMU-IMU related calibration parameters,
either.

[18] proposed to convert the readings from multiple IMUs into a single “virtual” synthetic IMU
measurement, which is expected to be less noisy. While offering computational savings compared to
other multi-inertial fusion algorithms, it relies on having perfectly known spatiotemporal calibration
for these inertial sensors. It is clear that the above mentioned works all assume the high-accuracy
IMU-IMU calibration is provided and they leverage multiple IMUs but with only one camera for
pose estimation. [29] showed that the fusion of three low-cost calibrated IMUs can be used to
achieve similar pose tracking performances as a single high-end IMU in the application of tracking
head mounted device (HMD). They also proposed to use static IMU measurements to calibrate ac-
celerometer intrinsics and non-static IMU measurements to calibrate the gyroscope intrinsics. [30]
proposed an extrinsic calibration algorithm for multiple IMUs when these IMUs are rigidly con-
nected and moving arbitrarily. Only measurements from these IMUs are needed for the calibration.
However, the time offsets between these IMUs and the IMU intrinsic calibration are all missing from
this work.

Although all the above mentioned works have shown that fusion of multiple IMUs to wheel-INS
or VINS can improve pose tracking accuracy, most of them reply entirely or partially on high-
accuracy prior calibration of these IMUs: including IMU-IMU spatiotemporal calibration and the
inertial intrinsics of these IMUs. Instead, this paper aim to solve the full parameter calibration
for multiple IMUs, including intrinsics, extrinsics and time offsets, especially for the application of
multiple inertial sensors in VINS domain.

2.2 Multi-camera aided inertial navigation

There have been quite a few works investigating fusing observations from multiple cameras for
visual-inertial navigation. Processing all the measurements from multiple cameras will significantly
slow down the system. Hence, [13] proposed an information based keyframe selection algorithm
for efficient multi-camera fusion. [31] proposed an efficient feature selection and tracking algorithm
to speed up the measurement processing for multiple cameras. These two works only fuse visual
observations from multiple cameras but without considering the sensor calibration. [15] proposed
to use multiple synchronized cameras to improve IMU-Camera calibration. They proved that the
extrinsic covariance bound will be smaller when more cameras are used. This indicates that the
IMU-Camera calibration can converge faster with more confidences. Our previous work, OpenVINS
[6] supports synchronized multi-camera aided VINS with extrinsic, intrinsic and temporal calibration
between IMU and camera. However, rolling shutter cameras are not supported by either of the above
works.

In this paper, the proposed MVIS support the extrinsic and intrinsic calibration for multiple
asynchronous global shutter or rolling shutter cameras. We provide quantitative analysis for how
the calibration estimates is improved when 1, 2, or 3 cameras are used simultaneously. In addition,
the proposed MVIS supports simultaneous calibration of global shutter and rolling shutter cameras
with image readout time.
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2.3 Multi-camera and multi-IMU navigation

There are only a few works focusing on joint calibration for multiple cameras and multiple IMUs.
[23] proposed MultiCal, which exploits continuous-time curves to represent pose states and supports
the spatial and temporal calibration for multiple IMUs and cameras with planar targets. However,
rolling shutter camera calibration and IMU/camera intrinsic calibration are not supported. [8] pro-
posed a filter based framework for fusing multiple IMUs and multiple cameras by estimating each
auxiliary IMU with full state (containing orientation, position, velocity, and biases), and enforced
relative pose constraints between sensors at fixed rates. It also showed robustness to inertial sensor
failures. This work does not take into account the inertial intrinsic parameters and only includes the
IMU-IMU/camera spatiotemporal calibration. Additionally, their multi-IMU constraints required
an additional 6 DoF pose for each auxiliary IMU since each IMU is propagated independently
forward. [22], extended the continuous-time Kalibr framework [21], to calibrate the extrinsic and
intrinsic parameters of auxiliary inertial sensors by formulating the angular velocity and linear accel-
erations as functions of the trajectory spline derivatives. However, when performing IMU-camera
and IMU-IMU calibration, the camera intrinsics and IMU-IMU time offset are fixed instead of
jointly optimized with other parameters. It does not support visual-inertial rolling shutter calibra-
tion. In addition, no theoretical consistency analysis or 3 sigma plots for IMU intrinsic calibration
are provided for validation.

Unlike the above mentioned works, the proposed MVIS supports multiple IMU/gyroscope cal-
ibrations with both global shutter and rolling shutter cameras. All related parameters, including
IMU/camera intrinsics, spatial and temporal parameters between IMUs and cameras, can be cali-
brated. In addition, we also, for the first time, provide MVIS observability analysis, which shows
that all these calibration parameters are observable given fully excited motions. We also investi-
gate the degenerate motions that might cause certain calibration parameter to fail, especially for
IMU-IMU/gyroscope spatiotemporal calibrations.

3 Multi-Visual-Inertial System

In this section, we first present the full IMU model (containing scales, axis-misalignment and g-
sensitivity) and camera model (containing camera intrinsics, lens distortion and RS readout time)
in the MVIS. We then introduce the state vector containing all the calibration parameters for an
arbitrary number of IMUs and cameras, followed by the nonlinear least-squares (NLS) formulation.

3.1 IMU Model

An IMU is assumed to consist of two separate frames [9]: gyroscope frame {w} and accelerometer
frame {a}. The “inertial” frame {I} is chosen to coincide with either {w} or {a} (see Fig. 1).
Similar to the IMU models in [24, 32, 9], the raw angular velocity wωm from the gyroscope and
linear acceleration aam from accelerometer is written as:

wωm = Tw
w
I R

Iω +Tg
Ia+ bg + ng (1)

aam = Ta
a
IR

Ia+ ba + na (2)

where Tw and Ta denote the scale and axis misalignment for {w} and {a}, respectively. Tg

represents the g-sensitivity. w
I R and a

IR denote the rotation from the base “inertial” {I} to gyroscope
and acceleration frame, respectively. Note that the translation between the gyroscope and the
accelerometer apw has been safely ignored in most VINS algorithms [24, 33, 32, 34], probably
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Figure 1: The MVIS sensor frames: base IMU (IMUb) sensor composed of accelerometer frame {a} and gyroscope {w},
base “inertial” frame {I} is determined to coincide with gyroscope frame {w} or accelerometer frame {a}, auxiliary
IMU (IMUa) {Ia}, auxiliary gyroscope (GYRO) {Ig}, and camera (CAM) {C} frames. {Aw} and {Aa} represent the
gyroscope and accelerometer frames of the auxiliary IMU. While an IMU can read both angular velocities and linear
acceleration, a gyroscope (GYRO) can only read angular velocities. The system observes environmental landmarks pf

through its cameras. The system can contain arbitrary amounts of sensors.

because it is small enough to be insignificant for MEMS IMUs or the pre-applied factory-calibrated
values in the IMU drivers are good enough. Therefore, we safely assume that the origin of the {w}
frame and {a} coincides and apw is not estimated in this paper. We use 6 parameters (indexed
column-wise upper/lower triangular matrix) to describe the Tw and Ta while Tg remains a 3×3 full
matrix. bg and ba are the gyroscope and accelerometer biases, which are both modeled as random
walks, and ng and na are the zero-mean Gaussian noises contaminating the measurements. The
corrected angular velocity Iω and linear acceleration Ia are thus defined as:

Iω = I
wRDw

(
wωm − bg − ng −Tg

Ia
)

(3)
Ia = I

aRDa (
aam − ba − na) (4)

where Dw = T−1
w and Da = T−1

a . In practice, we consider two models in this paper: RPNG model
and Kalibr model1.

• RPNG model: Tg, I
aR and D∗. D∗ is in upper triangular matrix form as:

D∗ =

d∗1 d∗2 d∗4
0 d∗3 d∗5
0 0 d∗6

 (5)

• Kalibr model: Tg, I
wR and D′

∗. D′
∗ is in lower triangular matrix form as:

D′
∗ =

d∗1 0 0
d∗2 d∗4 0
d∗3 d∗5 d∗6

 (6)

Note that the subscript ∗ denotes either w or a. The Kalibr model is used to compare with
Kalibr [21] and benefits from assuming the inertial frame to aligned with the accelerometer, since

1https://github.com/ethz-asl/kalibr/wiki/Multi-IMU-and-IMU-intrinsic-calibration
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the translation between {w} and {a} can be always ignored. In the remaining of our analysis the
RPNG model will be used as example.

3.2 Camera Model

Cameras follow a pinhole model as in [6, 8]. A 3D point feature, Gpf , is captured by a camera with
visual measurement function:

zC =
[
u v

]⊤
+ nC (7)

≜ hd (zn,xCin) + nC (8)

[
u
v

]
= hd (zn,xCin) (9)

where {u, v} is the distorted image pixel coordinate; zn = [un vn]
⊤ represents the normalized image

pixel; nC denotes the measurement noise; hd(·) maps the normalized image pixel onto the image
plane based on the lens distortion models and camera intrinsic parameters xCin :

xCin =
[
fu fv cu cv k1 k2 p1 p2

]⊤ (10)

Specifically, xCin can represent a pinhole model ({fu, fv} denotes focal length and {cu, cv} the center
point) with radial-tangential (radtan) or equivalent-distant (equidist) distortion.

For radtan distortion model, k1 and k2 represent the radial distortion coefficients while p1 and
p2 are tangential distortion coefficients. We refer the reader to [35, 6] for details on the equidist
distortion model. Note that the radtan model is used in the following derivations and analysis.
With xCin , hd(·), the radtan model is given by:[

u
v

]
=

[
fu 0
0 fv

] [
ud
vd

]
+

[
cu
cv

]
(11)[

ud
vd

]
=

[
dun + 2p1unvn + p2(r

2 + 2u2n)
dvn + p1(r

2 + 2v2n) + 2p2unvn

]
(12)

where r2 = u2n + v2n; d = 1 + k1r
2 + k2r

4;
GS cameras expose all pixels at a single time instance, while RS cameras expose each row

sequentially. As shown by [36], it may lead to large estimation errors if RS effects are not taken
into account. Additionally, the camera and IMU measurement timestamps can be incorrect due to
processing delays, or different clock references. To address this, we model both the time offset and
camera readout time to ensure all measurements are processed in a common clock frame of reference
and at the correct corresponding poses. Specifically, td denotes the time offset between IMU and
camera timeline while tr denotes the constant RS readout time for the whole image. If t denotes
the time when the pixel is captured, the RS measurement function for a normalized image pixel zn
is given by:

zn = hp

(
Cpf

)
≜

1
Czf

[
Cxf
Cyf

]
(13)

Cpf = ht(
I(t)
G R,GpI(t),

C
I R, CpI ,

Gpf ) (14)

≜ C
I R

I(t)
G R

(
Gpf − GpI(t)

)
+ CpI
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where {CI R, CpI} represents the rigid transformation between the IMU and camera frame. As usual,
{GI(t)R,GpI(t)} is the IMU global pose corresponding to the camera measurement time t.

If the image pixel zC , Eq. (7), is captured in the m-th row (out of total M rows), and tI is
the IMU state time corresponding to the captured image time tC when the first row of the image is
collected, the relationship between tI , tC , td and tr are expressed as:

tC = tI + td (15)

t = tI +
m

M
tr (16)

If the readout time tr = 0, then the camera is actually a GS camera and all rows are a function of
the same pose.

3.3 State Vector

The proposed MVIS can support any number of IMUs and cameras. For simplicity of presenta-
tion, we only consider one representative sensor (one base IMU, one auxiliary IMU, one auxiliary
gyroscope and one RS camera) of each types in the state vector. Both simulation and real world
experiments use multiple auxiliary IMUs/gyroscopes and cameras.

The state vector of MVIS contains the base IMU states XI , the auxiliary IMU states XIa and
the auxiliary gyroscope states XIg from time stamp 1 to k. Additionally, it also contains all the
sensor intrinsics XIn, spatiotemporal extrinsics XEx, and environmental features XF .

X =
[
X⊤
I X⊤

Ia
X⊤
Ig

X⊤
In X⊤

Ex X⊤
F

]⊤
(17)

XI =
[
x⊤
I1

x⊤
I2

· · · x⊤
Ik

]⊤ (18)

XIa =
[
x⊤
Ia1

x⊤
Ia2

· · · x⊤
Iak

]⊤
(19)

XIg =
[
x⊤
Ig1

x⊤
Ig2

· · · x⊤
Igk

]⊤
(20)

where XF contains 3D feature positions Gpfi (i = 1, · · · , l):

XF =
[
Gp⊤

f1
· · ·Gp⊤

fl

]⊤ (21)

The sub-states xI , xIa and xIg denote the base IMU state, auxiliary IMU state and auxiliary
gyroscope state, respectively. They contain the following:

xI =
[
x⊤
nav | x⊤

b

]⊤ (22)

≜
[
G
I θ

⊤ Gp⊤
I

Gv⊤
I | b⊤

g b⊤
a

]⊤ (23)

xIa =
[
Gv⊤

Ia
| x⊤

Ab

]⊤ (24)

≜
[
Gv⊤

Ia
| b⊤

Ag
b⊤
Aa

]⊤
(25)

xIg = bGg (26)

where xI contains IMU navigation state xnav and bias state xb; G
I θ (GIaθ) is 3D angle-axis vector

corresponding to the rotation G
I R (GIaR) from the base (auxiliary) IMU frame to global frame {G}.

Note that G
I θ = log

(
G
I R
)

with log(·) defined as the log of SO(3) [37]. GpI (GpIa) and GvI (GvIa)
represent the global position and velocity of base (auxiliary) IMU in {G}. bg and ba denote the
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Table 1: The full-calibration parameters in the proposed MVIS.

Sensor Extrinsics Temporal Intrinsics Qty

Base IMU − − xin 1
Aux IMU I

Ia
R, IpIa tda xAin ≥ 1

Aux Gyro I
Ig
R tdg xGin ≥ 1

Camera I
CR, IpC td, tr xCin ≥ 1

gyroscope and accelerometer bias for base IMU, respectively. bAg and bAa denote the gyroscope
and accelerometer bias for auxiliary IMU, respectively. bGg denotes the gyroscope bias for auxiliary
gyroscope. We did not keep a full navigation state for auxiliary IMU/gyroscope since the poses can
be recovered by the rigid body transform from the base IMU. Note that IMU state xI is created
based on IMU frame corresponding to the camera image time.

XIn contains base IMU intrinsics xin, auxiliary IMU intrinsics xAin , auxiliary gyroscope intrinsics
xGin and camera intrinsics xCin :

XIn =
[
x⊤
in x⊤

Ain
x⊤
Gin

x⊤
Cin

]⊤ (27)

xin =
[
x⊤
w x⊤

a x⊤
Tg

I
aθ

⊤
]⊤

(28)

xAin =
[
x⊤
Aw

x⊤
Aa

x⊤
Ag

Ia
Aa

θ⊤
]⊤

(29)

xGin = xGw (30)

where xw (xAw), xa (xAa) contains all the 6 column-wise parameters from Dw and Da for base
(auxiliary) IMU, respectively. xTg (xAg) contains all the 9 parameters for Tg and TAg from base
(auxiliary) IMU, respectively. I

aθ (IaAa
θ) denotes the rotation from the accelerometer frame to the

base (auxiliary) IMU frame. xGw denotes the 6 column-wise parameters from Dw for auxiliary
gyroscope.

XEx contains the spatiotemporal calibrations for base IMU to auxiliary IMU xIA , base IMU to
auxiliary gyroscope xIG and base IMU to camera xIC , respectively:

XEx =
[
x⊤
IA

x⊤
IG

x⊤
IC

]⊤ (31)

xIA =
[
I
Ia
θ⊤ Ip⊤

Ia
tda
]⊤ (32)

xIG =
[
I
Ig
θ⊤ tdg

]⊤
(33)

xIC =
[
I
Cθ

⊤ Ip⊤
C td tr

]⊤ (34)

Note that time offset between auxiliary IMU and base IMU is defined as: tda = ta− tI , where ta and
tI represent the auxiliary and base IMU measurement time, respectively. The IMU-Gyroscope time
offset tdg and IMU-Camera time offset td are defined in a similar way as tda . tr denotes the whole
image reading out time for the RS camera. Note that all the calibration parameters are summarized
in Table 1.

3.4 NLS Formulation

Given measurements zS from a sensor S, with additive white Gaussian noise nS , we have:

zS = hS(x) + nS , nS ∼ N (0,RS) (35)
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where hS(·) denotes the nonlinear observation function. Then, we can formulate the NLS problem
with state x as :

min
x

∑
∥zS − hS(x)∥ 2

RS
(36)

An initial guess x̂⊖ is needed to start the optimization. After computing the incremental state
correction δx, we can refine the state estimates by x̂⊕ = x̂⊖ ⊞ δx, where ⊞ represents the state
manifold update [37]. In summary, we have the following NLS equivalent to maximum likelihood
estimation (MLE) under some common assumptions:

min
x

∑
CI +

∑
CIa +

∑
CIg +

∑
CC (37)

where CI , CIa , CIg and CC denotes the cost for base IMU, auxiliary IMUs, auxiliary gyroscopes,
and cameras, respectively, and will be built explicitly later. The NLS from Eq. (37) can be solved
through various nonlinear least squares solvers [e.g. IPOPT [38], g2o solver [39], GTSAM [40],
Google Ceres [41]] and yields the optimal IMU states, point features, and full-calibration parameters
[see (17)]. In this paper, the GTSAM is selected to implement the algorithms for evaluations since
GTSAM can achieve comparable accuracy to other solvers [42], but this should not stop interested
readers from applying the above NLS formulation to other solvers.

4 ACI3: Preintegration with Intrinsics

In this section, we extend our analytic combined IMU integration (ACI2) [26] to incorporate IMU
intrinsics into preintegration, and propose an efficient IMU integrator that can be leveraged for IMU
intrinsic calibration.

The IMU dynamic model is given by [43, 44]:

G
I Ṙ = G

I R · ⌊Iω⌋ (38)
GṗI = GvI (39)
Gv̇I = G

I R
Ia+ Gg (40)

I ḃg = nwg, (41)
I ḃa = nwa

where Gg = [0 0 − 9.81]⊤, nwg and nwa are the white Gaussian noises driving the gyroscope and

accelerometer biases. Iω = [ωx ωy ωz]
⊤ and ⌊Iω⌋ =

 0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

 represents a skew symmetric

matrix [43]. We also denote x̂ as estimate of x while x̃ as error states between x and x̂, i.e.,
x̃ = x⊟ x̂. As [4, 45], the IMU pose is represented as SO(3)×R3 with error states defined as:

R = R̂ exp(δθ) (42)
p = p̂+ p̃ (43)

where exp(δθ) ≃ I3 + ⌊δθ⌋ and δθ is assumed to be small angles; exp(·) denotes the exponential
operation of SO(3) [37].
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4.1 Pre-integration Terms

Between two sampling times tk and tj , we integrate the IMU dynamic model as follows:

G
IjR = G

Ik
R ·∆R (44)

GpIj =
GpIk +

GvIkδt+
G
Ik
R∆p+

1

2
Ggδt2 (45)

GvIj =
GvIk +

G
Ik
R∆v + Ggδt (46)

bgj = bgk +∆bg (47)
baj = bak +∆ba (48)

where δt = tj − tk, while ∆R, ∆p, ∆v, ∆bg, and ∆ba are the IMU pre-integration terms from tk
to tj , described by:

∆R ≜ exp

(∫ tj

tk

Iτωdτ

)
= hR(xIk ,xIj ) (49)

∆p ≜
∫ tj

tk

∫ s

tk

Ik
Iτ
RIτadτds = hp(xIk ,xIj ) (50)

∆v ≜
∫ tj

tk

Ik
Iτ
RIτadτ = hv(xIk ,xIj ) (51)

∆bg ≜
∫ tj

tk

nwgdτ = bgj − bgk (52)

∆ba ≜
∫ tj

tk

nwgdτ = baj − bak (53)

where we have defined:

hR(xIk ,xIj ) ≜
G
Ik
R⊤G

IjR (54)

hp(xIk ,xIj ) ≜
G
Ik
R⊤

(
GpIj − GpIk −

GvIkδt−
1

2
Ggδt2

)
(55)

hv(xIk ,xIj ) ≜
G
Ik
R⊤ (GvIj − GvIk −

Ggδt
)

(56)

In the following, the proposed ACI3 recursively computes the mean and covariance of these pre-
integrated terms (i.e. ∆R, ∆p, ∆v, ∆bg and ∆ba) with intrinsics xin.

4.2 Recursive Formulation

Assuming there are j − k+1 IMU readings between the timestamps k and j, there exits an integer
i such that: k ≤ k + i < k + i + 1 ≤ j. ∆Ri, ∆pi, ∆vi, ∆bgi and ∆bai denote the integration
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components using all IMU readings from time tk to tk+i:

∆Ri = exp

(∫ tk+i

tk

Iτωdτ

)
(57)

∆pi =

∫ tk+i

tk

∫ s

tk

Ik
Iτ
RIτadτds (58)

∆vi =

∫ tk+i

tk

Ik
Iτ
RIτadτ (59)

∆bgi = bgk+i
− bgk (60)

∆bai = bak+i
− bak (61)

With that, we compute the pre-integration in the following recursive form:

∆Ri+1 = ∆Ri ·Ri,i+1 (62)
∆pi+1 = ∆pi +∆viδti +∆Ri · pi,i+1 (63)
∆vi+1 = ∆vi +∆Ri · vi,i+1 (64)
∆bgi+1 = ∆bgi + bgi,i+1 (65)
∆bai+1 = ∆bai + bai,i+1 (66)

where the increments are defined as:

Ri,i+1 ≜
Ik+i

Ik+i+1
R = exp

(∫ tk+i+1

tk+i

Iτωdτ

)
(67)

pi,i+1 ≜
∫ tk+i+1

tk+i

∫ s

tk+i

Ik+i

Iτ
RIτadτds (68)

vi,i+1 ≜
∫ tk+i+1

tk+i

Ik+i

Iτ
RIτadτ (69)

bgi,i+1 ≜
∫ tk+i+1

tk+i

nwgdτ (70)

bai,i+1 ≜
∫ tk+i+1

tk+i

nwadτ (71)

By applying Eq. (62)-(66) to all the IMU readings from tk to tj , we can compute both the mean
and covariance of the IMU pre-integration terms (i.e. ∆R, ∆p, ∆v, ∆bg and ∆ba), as shown in
the following sections.

4.3 Mean Prediction

To simplify the ensuring derivations, we rewrite the IMU readings ωk+i and ak+i as:

ωk+i =
I
wRDw

(
wωmk+i

−Tgak+i − bgk+i
− ngk+i

)
= I

wRDw

(
wωmk+i

− bgk+i
− ngk+i

−Tgak+i

)
= I

wRDw

(
wωmk+i

−∆bgi − bgk − ngk+i
−Tgak+i

)
ak+i =

I
aRDa

(
aamk+i

− bak+i
− nak+i

)
= I

aRDa

(
aamk+i

−∆bai − bak − nak+i

)
RPNG-2023-MVIS 12



Note that the ωk+i and ak+i are actually function of xin and xbk . The angular velocity and linear
acceleration can be written as:

ωk+i = ω̂k+i + ω̃k+i (72)
ak+i = âk+i + ãk+i (73)

With bias terms defined in Eq. (60) and (61), ω̂k+i and âk+i are computed as [see Eq. (3) and (4)]:

ω̂k+i =
I
wR̂D̂w

(
wωmk+i

−∆b̂gi−b̂gk−T̂gâk+i

)
(74)

âk+i =
I
aR̂D̂a

(
aamk+i

−∆b̂ai − b̂ak

)
(75)

≜
[
Ia1

Ia2
Ia3
]⊤

For simplicity of derivations, we also define:

wω̂ = wωmk+i
−∆b̂gi − b̂gk − T̂gâk+i (76)

≜
[
wω1

wω2
wω3

]⊤ (77)
aâ = aamk+i

−∆b̂ai − b̂ak (78)

≜
[
aa1

aa2
aa3
]⊤ (79)

Let’s then define the error states 2 for the ωk+i and ak+i as:

ãk+i =
I
aRHDa x̃a − ⌊âk+i⌋IaRδθIa − I

aRDa

(
b̃ak +∆b̃ai + nak+i

)
(80)

ω̃k+i =
I
wR̂HDw x̃w − I

wRDwTg
I
aRHDa x̃a − ⌊ω̂k+i⌋IwRδθIw + I

wRDwTg⌊âk+i⌋IaRδθIa

− I
wRDwHTg x̃Tg − I

wRDw

(
b̃gk +∆b̃gi + ngk+i

−Tg
I
aRDa

(
b̃ak +∆b̃ai + nak+i

))
(81)

Hence, we can have:

[
ω̃k+i

ãk+i

]
≜ Hwa

b

[
∆b̃gi

∆b̃ai

]
+Hwa

bk

[
b̃gk

b̃ak

]
+Hwa

in


x̃w

x̃a

x̃Tg

δθIw
δθIa

+Hwa
n

[
ngk+i

nak+i

]
(82)

2Note that the linearization here is slightly different with our previous work [9]. In our previous work [9], due to
JPL quaternion [43] is used, the linearization for I

aR and I
wR are written as:

I
aR = exp(−δθIa)

I
aR̂

I
wR = exp(−δθIw )

I
wR̂

However, in this paper, due to the SO(3) is used, the linearization for I
aR and I

wR are written as:

I
aR = I

aR̂ exp(δθIa)

I
wR = I

wR̂ exp(δθIw )
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with:

Hwa
b =

[
−I

wRDw
I
wRDwTg

I
aRDa

03 −I
aRDa

]
(83)

Hwa
bk

=

[
−I

wRDw
I
wRDwTg

I
aRDa

03 −I
aRDa

]
(84)

Hwa
n =

[
−I

wRDw
I
wRDwTg

I
aRDa

03 −I
aRDa

]
(85)

Hin =
[
Hxw Hxa Hgs HIw HIa

]
(86)

Hxw =

[
I
wR̂HDw

03

]
(87)

Hxa =

[
−I

wRDwTg
I
aRHDa

I
aRHDa

]
(88)

Hgs =

[
−I

wRDwHTg

03

]
(89)

HIa =

[
I
wRDwTg⌊âk+i⌋IaR

−⌊âk+i⌋IaR

]
(90)

HIw =

[
−⌊ω̂k+i⌋IwR

03

]
(91)

Note that if the RPNG model is used, HDw , HDa , HTg and HIa are computed with:

HDw =
[
wω1e1

wω2e1
wω2e2

wω3I3
]

(92)

HDa =
[
aa1e1

aa2e1
aa2e2

aa3I3
]

(93)

HTg =
[
Ia1I3

Ia2I3
Ia3I3

]
(94)

HIa =

[
I
wRDwTg⌊âk+i⌋IaR

−⌊âk+i⌋IaR

]
(95)

If the Kalibr model is used, HDw , HDa , HTg and HIw are computed with:

HDw =
[
wω1I3

wω2e2
wω2e3

wω3e3
]

(96)

HDa =
[
aa1I3

aa2e2
aa2e3

aa3e3
]

(97)

HTg =
[
Ia1I3

Ia2I3
Ia3I3

]
(98)

HIw =

[
−⌊ω̂k+i⌋IwR

03

]
(99)
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Assuming that ω̂k+i and âk+i are constant during the IMU sampling interval [tk+i, tk+i+1], we have:

R̂i,i+1 = exp (ω̂k+iδti) (100)

p̂i,i+1 =

∫ tk+i+1

tk+i

∫ s

tk+i

Ii+i

Iτ
R̂dτds · âk+i (101)

≜ Ξ2 · âk+i

v̂i,i+1 =

∫ tk+i+1

tk+i

Ik+i

Iτ
R̂dτ · âk+i (102)

≜ Ξ1 · âk+i

b̂gi,i+1 = 03×1 (103)

b̂ai,i+1 = 03×1 (104)

where Ξ1 and Ξ2 are defined below.

Ξ1 =
∫ tk+i+1

tk+i

Ik+i

Iτ
R̂dτ (105)

Ξ2 =
∫ tk+i+1

tk+i

∫ s

tk+i

Ii+i

Iτ
R̂dτds (106)

We thus recursively compute the IMU pre-integration mean:

∆R̂i+1 = ∆R̂i · R̂i,i+1 (107)

∆p̂i+1 = ∆p̂i +∆v̂iδti +∆R̂i · p̂i,i+1 (108)

∆vi+1 = ∆v̂i +∆R̂i · v̂i,i+1 (109)

∆b̂gi+1 = ∆b̂gi + b̂gi,i+1 (110)

∆b̂ai+1 = ∆b̂ai + b̂ai,i+1 (111)

4.4 Covariance Prediction

To compute the covariance of the preintegration measurements, we need to obtain the state transi-
tion matrix and noise Jacobians of the recursive formulation by linearizing the three preintegration
terms [see Eq. (62)-(64)]. Hence, Ri,i+1 from Eq. (62), can be written as:

Ri,i+1 ≃ exp (ωk+iδti) (112)
= exp ((ω̂k+i + ω̃k+i)δti) (113)

= exp
(
θ̂i,i+1

)
exp

(
Jr(θ̂i,i+1)ω̃k+iδti

)
(114)
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where θ̂i,i+1 = ω̂k+iδti and Jr(θ̂i,i+1) ≜ Jr (ω̂k+iδti) denotes the right Jacobian of SO(3) [46].
pi,i+1 from Eq. (63) can be written as:

pi,i+1 =

∫ tk+i+1

tk+i

∫ s

tk+i

Ik+i

Iτ
RIτadτds

≃
∫ tk+i+1

tk+i

∫ s

tk+i

exp (ωk+iδτ)ak+idτds

=

∫ tk+i+1

tk+i

∫ s

tk+i

exp ((ω̂k+i + ω̃k+i) δτ) (âk+i + ãk+i)dτds

≃
∫ tk+i+1

tk+i

∫ s

tk+i

exp (ω̂k+iδτ) âk+idτds︸ ︷︷ ︸
p̂i,i+1

−
∫ tk+i+1

tk+i

∫ s

tk+i

exp (ω̂k+iδτ) ⌊âk+i⌋Jr(ωk+iδτ)δτdτds︸ ︷︷ ︸
Ξ4

· ω̃k+i

+

∫ tk+i+1

tk+i

∫ s

tk+i

exp (ω̂k+iδτ) dτds︸ ︷︷ ︸
Ξ2

· ãk+i

vi,i+1 from Eq. (64) can be written as:

vi,i+1 =

∫ tk+i+1

tk+i

Ik+i

Iτ
RIτadτ

≃
∫ tk+i+1

tk+i

exp (ωk+iδτ)ak+idτ

=

∫ tk+i+1

tk+i

exp ((ω̂k+i + ω̃k+i) δτ) (âk+i + ãk+i) dτ

≃
∫ tk+i+1

tk+i

exp (ω̂k+iδτ) âk+idτ︸ ︷︷ ︸
v̂i,i+1

−
∫ tk+i+1

tk+i

exp (ω̂k+iδτ) ⌊âk+i⌋Jr(ω̂k+iδτ)δτdτ︸ ︷︷ ︸
Ξ3

· ω̃k+i

+

∫ tk+i+1

tk+i

exp (ω̂k+iδτ) dτ︸ ︷︷ ︸
Ξ1

· ãk+i
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In summary, we get:

Ri,i+1 = R̂i,i+1R̃i,i+1 (115)

= R̂i,i+1 exp
(
Jr(θ̂i,i+1)ω̃k+iδti

)
(116)

pi,i+1 = p̂i,i+1 + p̃i,i+1 (117)
= p̂i,i+1 −Ξ4ω̃k+i +Ξ2ãk+i (118)

vi,i+1 = v̂i,i+1 + ṽi,i+1 (119)
= v̂i,i+1 −Ξ3ω̃k+i +Ξ1ãk+i (120)

The integrated components Ξ3 and Ξ4 are defined as:

Ξ3 ≜
∫ tk+i+1

tk+i

Ik+i

Iτ
R⌊âk+i⌋Jr (ω̂k+iδτ) δτ dτ (121)

Ξ4 ≜
∫ tk+i+1

tk+i

∫ s

tk+i

Ik+i

Iτ
R⌊âk+i⌋Jr (ω̂k+iδτ) δτ dτds (122)

Note that Ξi, i = {1 . . . 4} can be evaluated analytically with detailed derivations in [34] or numer-
ically using Runge–Kutta fourth-order (RK4) method. By summarizing the above derivations, we
have:

Ri,i+1 = R̂i,i+1 exp
(
Jr(θ̂i,i+1)ω̃k+iδti

)
(123)

pi,i+1 = p̂i,i+1 −Ξ4ω̃k+i +Ξ2ãk+i (124)
vi,i+1 = v̂i,i+1 −Ξ3ω̃k+i +Ξ1ãk+i (125)

The pre-integrated errors states defined from Eq. (57) - (61):

∆Ri = ∆R̂i exp (δ∆θi) (126)
∆pi = ∆p̂i +∆p̃i (127)
∆vi = ∆v̂i +∆ṽi (128)

∆bgi = ∆b̂gi +∆b̃gi (129)

∆bai = ∆b̂ai +∆b̃ai (130)

Thus, from Eq. (62) to (64), we can derive:δ∆θi+1

∆p̃i+1

∆ṽi+1

 = Φnn

δ∆θi
∆p̃i

∆ṽi

+Hwa

[
ω̃k+i

ãk+i

]
(131)

where:

Φnn =

 R̂⊤
i,i+1 03 03

−∆R̂i⌊p̂i,i+1⌋ I3 I3δti
−∆R̂i⌊v̂i,i+1⌋ 03 I3

 (132)

Hwa =

Jr(θi,i+1)δti 03
−∆R̂iΞ4 ∆R̂iΞ2

−∆R̂iΞ3 ∆R̂iΞ1

 (133)
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By plugging in Eq. (80) and (81), the linearized IMU pre-integration model becomes:
δ∆θi+1

∆p̃i+1

∆ṽi+1

∆b̃gi+1

∆b̃ai+1

 =

[
Φnn HwaH

wa
b

06×9 I6

]
δ∆θi
∆p̃i

∆ṽi

∆b̃gi

∆b̃ai

+

[
HwaH

wa
bk

0

] [
b̃gk

b̃ak

]
+

[
HwaH

wa
in

0

]
x̃w

x̃a

x̃Tg

δθIw
δθIa



+

[
HwaH

wa
n 09×6

06×6 I6δti

]
ndg

nda

ndwg

ndwa

 (134)

If the IMU pre-integration error states are denoted by:

z̃Ii =
[
δ∆θ⊤

i ∆p̃⊤
i ∆ṽ⊤

i ∆b̃⊤
gi ∆b̃⊤

ai

]⊤
(135)

Then, we can simplify Eq. (134) by:

z̃Ii+1 = Φi+1,iz̃Ii +Φbx̃bk +Φinx̃in +GindI (136)

where Φi+1,i, Φb, Φin and Gi are given as:

Φi+1,i =

[
Φnn HwaH

wa
b

06×9 I6

]
(137)

Φb =

[
HwaH

wa
bk

0

]
(138)

Φin =

[
HwaH

wa
in

0

]
(139)

Gi =

[
HwaH

wa
n 09×6

06×6 I6δti

]
(140)

where Hwa
b , Hwa

in and Hwa
n can be found from Eq. (82). Finally, the measurement covariance QI

follows the recursive form:

QIi+1 = Φi+1,iQIiΦ
⊤
i+1,i +GiQdG

⊤
i (141)

where Qd denotes the discrete noise (ng, na, nwg and nwa) from IMU readings. Note that nd∗ ∼
N (0, σ

2
∗I3
δti

) and hence the covariance for ndI can be written as:

Qd =


σ2
g

δti
I3 03 03 03

03
σ2
a

δti
I3 03 03

03 03
σ2
wg

δti
I3 03

03 03 03
σ2
wa
δti

I3

 (142)

Through recursive evaluation of the above equation, we can recover the pre-integrated IMU mea-
surement covariance between tk and tj .
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5 Base Inertial Costs

Since IMU intrinsics and biases are needed for IMU integration, ∆R, ∆p and ∆v are also functions
of xin and xb.

In order to avoid re-integration and re-linearization in iterative solvers when the IMU intrinsics
and bias estimates are refined, the IMU pre-integration needs to fix the linearization points not only
for xbk as in [4], but for xin.

To this end, we model the pre-integrated IMU measurements between time tk and tj as zI ∼
N (ẑI ,QI):

zI =


log(∆R)

∆p
∆v
∆xb

 =


log(∆R(xbk ,xin,nθ))

∆p(xbk ,xin,np)
∆v(xbk ,xin,nv)

nb

 (143)

where the accumulated noises of IMU measurements are denoted with nI = [n⊤
θ n⊤

p n⊤
v n⊤

b ]
⊤ and

nI ∼ N (0,QI) from Section 4.4. We linearize the above measurements at the current state estimate
x̂ as:

∆R = ∆R̂ exp

(
∂δ∆θ

∂x̃bk

x̃bk +
∂δ∆θ

∂x̃in
x̃in + nθ

)
(144)

∆p = ∆p̂+
∂∆p̃

∂x̃bk

x̃bk +
∂∆p̃

∂x̃in
x̃in + np (145)

∆v = ∆v̂ +
∂∆ṽ

∂x̃bk

x̃bk +
∂∆ṽ

∂x̃in
x̃in + nv (146)

∆xb = nb (147)

Note that the biases or IMU intrinsics Jacobians can be recursively computed. Between time stamp
tk and tj , we can have integer i such that k ≤ k + i < k + i+ 1 ≤ j. Hence, we get:

∂

δ∆θi+1

∆p̃i+1

∆ṽi+1


∂x̃∗

= Φnn

∂

δ∆θi
∆p̃i

∆ṽi


∂x̃∗

+HwaH
wa
∗ (148)

where ∗ denotes bk or in. Then, these Jacobians can be rewritten as:

∂δ∆θi+1

∂x̃∗
= R̂⊤

i,i+1

∂δ∆θi
∂x̃∗

+
[
Jr(θi,i+1)δti 03

]
Hwa

∗

∂∆p̃i+1

∂x̃∗
= −∆R̂i⌊p̂i,i+1⌋

∂δ∆θi
∂x̃∗

+
∂∆p̃i

∂x̃∗
+

∂∆ṽi

∂x̃∗
δti +∆R̂i

[
−Ξ4 Ξ2

]
Hwa

∗

∂∆ṽi+1

∂x̃∗
= −∆R̂i⌊v̂i,i+1⌋

∂δ∆θi
∂x̃∗

+
∂∆ṽi

∂x̃∗
+∆R̂i

[
−Ξ3 Ξ1

]
Hwa

∗

We would like to fix linearization points for the bias states and IMU intrinsics states with initial
guesses to avoid the re-integration of the IMU measurements during iterative solving. If we use x̂(0)

denote the initial estimates while x̃(0) denote the corresponding initial error states, then we have:

x = x̂+ x̃ = x̂(0) + x̃(0) (149)

⇒ x̃(0) = x̂− x̂(0) + x̃ ≜ ∆x̂+ x̃ (150)
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The IMU measurements can be linearized with the initial estimates x̂(0) as:

∆R = ∆R̂(0) exp (
∂δ∆θ

∂x̃bk

x̃
(0)
bk

+
∂δ∆θ

∂x̃in
x̃
(0)
in + nθ) (151)

= hR(xIk ,xIj )

∆p = ∆p̂(0) +
∂∆p̃

∂x̃bk

x̃
(0)
bk

+
∂∆p̃

∂x̃in
x̃
(0)
in + np (152)

= hp(xIk ,xIj )

∆v = ∆v̂(0) +
∂∆ṽ

∂x̃bk

x̃
(0)
bk

+
∂∆ṽ

∂x̃in
x̃
(0)
in + nv (153)

= hv(xIk ,xIj )

By applying Eq. (150) to Eq. (151)-(153), the pre-integrated IMU measurement with initial biases
and initial IMU intrinsic estimates can be rewritten as:

∆R̂(0) = hR(xIk ,xIj )· exp
(
−∂δ∆θ

∂x̃bk

(∆x̂bk + x̃bk)−
∂δ∆θ

∂x̃in
(∆x̂in + x̃in)− nθ

)
∆p̂(0) = hp(xIk ,xIj )−

∂∆p̃

∂x̃bk

(∆x̂bk + x̃bk)−
∂∆p̃

∂x̃in
(∆x̂in + x̃in)− np

∆v̂(0) = hv(xIk ,xIj )−
∂∆ṽ

∂x̃bk

(∆x̂bk + x̃bk)−
∂∆ṽ

∂x̃in
(∆x̂in + x̃in)− nv

We define θcorr, pcorr and vcorr as the orientation, position and velocity correction terms due to
the linearization point changes of xbk and xin:

θcorr =
∂δ∆θ

∂x̃bk

∆x̂bk +
∂δ∆θ

∂x̃in
∆x̂in (154)

pcorr ≜
∂∆p̃

∂x̃bk

∆x̂bk +
∂∆p̃

∂x̃in
∆x̂in (155)

vcorr ≜
∂∆ṽ

∂x̃bk

∆x̂bk +
∂∆ṽ

∂x̃in
∆x̂in (156)

Finally, the base IMU preintegration measurements is formulated in Eq. (157).


log
(
∆R̂(0)

)
∆p̂(0)

∆v̂(0)

06×1


︸ ︷︷ ︸

z′I

=


log
(
hR(xIk ,xIj ) exp

(
−∂δ∆θ

∂x̃bk
x̃bk −

∂δ∆θ
∂x̃in

x̃in − θcorr

)
exp(−n′

θ)
)

hp(xIk ,xIj )−
∂∆p̃
∂x̃bk

x̃bk −
∂∆p̃
∂x̃in

x̃in − pcorr − np

hv(xIk ,xIj )− ∂∆ṽ
∂x̃bk

x̃bk −
∂∆ṽ
∂x̃in

x̃in − vcorr − nv

xbj − xbk − nb


︸ ︷︷ ︸

hI(xIk
,xIj

,xin)⊞n′
I

(157)

The new IMU measurement noise n′
I is computed as:

n′
I ≜


n′
θ

np

nv

nb

 =

[
Jr(−θcorr) 03×12

012×3 I12

]
︸ ︷︷ ︸

Hn′


nθ

np

nv

nb

 ≜ Hn′nI (158)
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with covariance n′
I ∼ N (0,Q′

I) and Q′
I = Hn′QIH

⊤
n′ . As compared to the conventional IMU

pre-integration [4] and general pre-integration [28] with only mean correction, we have both the
mean and covariance corrections when linearization points change for biases and IMU intrinsics. In
addition, we also model cross correlations between IMU navigation state and bias state, which are
missing from [4] and [28]. Finally, the corresponding base IMU pre-integration cost is:

CI ≜ ∥z′I ⊟ h(xIk ,xIj ,xin)∥ 2

Q′
I

(159)

6 Auxiliary Inertial Costs

Leveraging the base IMU pre-integration measurements [see Eq. (157)], we now show how to derive
the costs for the auxiliary IMU and gyroscope by using the rigid body constraints between the base
and auxiliary IMUs/gyroscopes.

6.1 Auxiliary IMU Cost

As the auxiliary IMUs are considered to be temporally asynchronous with the base IMU, we employ
pose interpolation to convert the associate the base IMU state with the auxiliary IMU state at the
start and end of the integration period. The rigid body constraint between the auxiliary and base
IMU with interpolation terms is given by:[

G
Ia
R GpIa

01×3 1

]
≜

[
G
Iin

R GpIin

01×3 1

] [
I
Ia
R IpIa

01×3 1

]
(160)

where {GIinR,GpIin} is the interpolated pose computed with constant linear velocity GvI and con-
stant angular velocity Iω:[

G
Iin

R GpIin

01×3 1

]
=

[
G
I R

GpI

01×3 1

] [
exp

(
Iωtda

)
GvItda

01×3 1

]
The auxiliary IMU pose {GIaR,GpIa} can be found with the base IMU pose {GI R,GpI} as:

G
IaR = G

I R exp
(
Iωtda

)
I
IaR (161)

GpIa = G
I R

GvItda +
GpI +

G
I R exp

(
Iωtda

)
IpIa (162)

Note that Iω denotes the angular velocity from the base IMU. Since Iω is not in the state vector,
we need to use the current best estimate of the Iω̂.

There is no need to keep auxiliary IMU pose in the state vector, because the auxiliary IMU pose
can be expressed by the base IMU state xI and extrinsics xIA . The auxiliary IMU state, Eq. (24),
only contains the auxiliary IMU velocity and biases. We need to reformulate the pre-integration
Eq. (54)-(56) for the auxiliary IMU cost with the Eq. (161)-(162) rigid body constraints. Following
Eq. (157), with some abuse of the notations for the auxiliary IMU pre-integrated measurements z′Ia
and noises n′

Ia
, we can define auxiliary IMU residual as Eq. (163).
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
log
(
∆R̂(0)

)
∆p̂(0)

∆v̂(0)

06×1


︸ ︷︷ ︸

z′Ia

=



log

(
hR(·) exp

(
− ∂δ∆θ

∂x̃Abk

x̃Abk
− ∂δ∆θ

∂x̃Ain
x̃Ain − θAcorr

)
exp(−n′

θ)

)
hp(·)− ∂∆p̃

∂x̃Abk

x̃Abk
− ∂∆p̃

∂x̃Ain
x̃Ain − pAcorr − np

hv(·)− ∂∆ṽ
∂x̃Abk

x̃Abk
− ∂∆ṽ

∂x̃Ain
x̃Ain − vAcorr − nv

xAbj
− xAbk

− nb


︸ ︷︷ ︸

hA(x)⊞n′
Ia

(163)

We have defined hR(·), hp(·) and hv(·) for the auxiliary IMU:

hR(·) ≜ G
Iak

R⊤G
Iaj

R

≜
(
G
Ik
R exp

(
Ikωtda

)
I
IaR

)⊤ G
IjR exp

(
Ijωtda

)
I
IaR

≜ hR(xIk ,xIj ,xIA)

hp(·) ≜ G
Iak

R⊤
(

GpIaj
− GpIak

− GvIak
δt− 1

2
Ggδt2

)
≜ hp(xIk ,xIj ,xIak

,xIA)

hv(·) ≜ G
Iak

R⊤
(
GvIaj

− GvIak
− Ggδt

)
≜ hv(xIk ,xIak

,xIaj
,xIA)

Following Eq. (154)-(156), the linearization correction terms of orientation θAcorr , position pAcorr

and velocity vAcorr for the auxiliary IMU are given by:

θAcorr =
∂δ∆θ

∂x̃Abk

∆x̂Abk
+

∂δ∆θ

∂x̃Ain

∆x̂Ain (164)

pAcorr =
∂∆p̃

∂x̃Abk

∆x̂Abk
+

∂∆p̃

∂x̃Ain

∆x̂Ain (165)

vAcorr =
∂∆ṽ

∂x̃Abk

∆x̂Abk
+

∂∆ṽ

∂x̃Ain

∆x̂Ain (166)

Finally, the corresponding auxiliary IMU cost is given by:

CIa ≜ ∥z′Ia ⊟ h(x,n′
Ia)∥

2

Q′
Ia

(167)

6.2 Auxiliary Gyroscope Cost

Similarly, the auxiliary gyroscope cost can be derived as the integration of angular velocity and
gyroscope biases. The gyroscope state is defined as gyroscope biases, the intrinsics xGw and the
extrinsics xIG . The rotation constraint when considering a time offset is written as:

G
IgR = G

I R exp
(
Iωtdg

)
I
IgR (168)
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Reusing the notation hR(·), see Eq. (54), we get the gyroscope rotation function as :

hR(·) ≜ G
Igk

R⊤G
Igj

R

≜
(
G
Ik
R exp

(
Ikωtdg

)
I
IgR

)⊤
G
IjR exp

(
Ijωtdg

)
I
IgR

≜ hR(xIk ,xIj ,xIG)

where we still use the current best estimate for the Iω. The pre-integrated auxiliary gyroscope
measurements and noises is defined in Eq. (169).

log(∆R̂(0)
)

03×1


︸ ︷︷ ︸

z′Ig

=

log
(
hR(·) exp

(
− ∂δ∆θ

∂b̃Ggk

b̃Ggk
− ∂δ∆θ

∂x̃Gin
x̃Gin − θGcorr

)
exp(−n′

θ)

)
bGgj

− bGgk
− ng


︸ ︷︷ ︸

h(x)⊞n′
Ig

(169)

The linearization correction term is defined as:

θGcorr =
∂δ∆θ

∂b̃Ggk

∆b̂Ggk
+

∂δ∆θ

∂x̃Gin

∆x̂Gin (170)

Finally, the auxiliary gyroscope cost is given by:

CIg ≜ ∥z′Ig ⊟ h(x,n′
Ig)∥

2

Q′
Ig

(171)

6.3 Auxiliary Inertial Sensor Initialization

An initial linearization point of the auxiliary inertial states is required to perform optimization. This
can be done by leveraging the initial linearization point of the base IMU. Specifically, we initialize
the IMU state xIa , which contains the velocity GvIa and biases (bAg and bAa) of the auxiliary IMU,
as follows:

• The initial velocity of the auxiliary IMU is computed based on the rigid body constraints:

GvIa = GvI +
G
I R⌊IIaR

Iaω⌋IpIa (172)

• For b̂Agk
, we integrate the angular velocity measurements with zero bias for auxiliary IMU to

get ∆Ra. Then the following linear system can be solved:

∂δ∆θ

∂b̃Agk

· b̂Agk
= log

(
∆R⊤

a
G
Iak

R⊤G
Iak+1

R
)

(173)

where G
Iak

R and G
Iak+1

R denote the orientation of the auxiliary IMU which can be computed
from base IMU orientation with IMU-IMU extrinsics.

• For b̂Aak
, the accelerometer bias is initialized to 03×1.
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7 Visual Costs

We build the complete camera measurement function hC(·) by incorporating the distortion function
hd(·) [see Eq. (7)], the projection function hp(·) [see Eq. (13)] and the transformation function
ht(·) [see Eq. (14)] [6, 8]:

zC = hC(x) + nC (174)
= hd(zn,xCin) + nC (175)

= hd(hp(
Cpf ),xCin) + nC (176)

= hd(hp(ht(
G
CR,GpC ,

Gpf )),xCin) + nC (177)

We need to linearize the camera model for update, which is given by:

z̃C ≃ HC x̃+ nC (178)

where z̃C ≜ zC −hC(x̂) and HC ≜ ∂z̃C
∂x̃ . Using the chain rule, we get the following Jacobian matrix:

HC =
[
∂z̃C
∂x̃I

∂z̃C
∂x̃IC

∂z̃C
∂x̃Cin

∂z̃C
∂x̃f

]
(179)

=
[
Hpf

∂C p̃f

∂x̃I
Hpf

∂C p̃f

∂x̃IC

∂z̃C
∂x̃Cin

Hpf

∂C p̃f

∂x̃f

]
where Hpf

= ∂z̃C
∂z̃n

∂z̃n
∂C p̃f

. We show how to use radtan distortion model to compute ∂C p̃f

∂x̃I
, ∂C p̃f

∂x̃IC
,

∂z̃C
∂x̃Cin

, ∂C p̃f

∂x̃f
and Hpf

. The camera intrinsic Jacobians HCin = ∂z̃C
∂x̃Cin

can be written as:

HCin =

[
∂z̃C

∂
[
f̃u f̃v c̃u c̃v

]⊤ ∂z̃C

∂
[
k̃1 k̃2 p̃1 p̃2

]⊤] (180)

∂z̃C

∂
[
f̃u f̃v c̃u c̃v

]⊤ =

[
ud 0 1 0
0 vd 0 1

]
(181)

∂z̃C

∂
[
k̃1 k̃2 p̃1 p̃2

]⊤ =

[
fuunr

2 fuunr
4 2fuunvn fu(r

2 + 2u2n)
fvvnr

2 fvvnr
4 fv(r

2 + 2v2n) 2fvunvn

]
(182)

We continue to compute ∂z̃C
∂z̃n

and ∂z̃n
∂C p̃f

for Hpf
within Eq. (179) as:

∂z̃C
∂z̃n

=

[
h11 h12
h21 h22

]
(183)

h11 = fu(d+ 2k1u
2
n + 4k2u

2
nr

2 + 2p1vn + 6p2un)

h12 = fu(2k1unvn + 4k2unvnr
2 + 2p1un + 2p2vn)

h21 = fv(2k1unvn + 4k2unvnr
2 + 2p1un + 2p2vn)

h22 = fv(d+ 2k1v
2
n + 4k2v

2
nr

2 + 6p1vn + 2p2un)

∂z̃C
∂C p̃f

=
1

Cz2f

[
Czf 0 −Cxf
0 Czf −Cyf

]
(184)
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The Jacobians of Cpf regarding to the IMU state xI are written as:

∂C p̃f

∂x̃I
=
[
∂C p̃f

∂x̃nav

∂C p̃f

∂x̃b

∂C p̃f

∂x̃in

]
(185)

∂C p̃f

∂x̃n
= C

I R̂
I
GR̂

[
⌊Gp̂f − Gp̂I⌋GI R̂ −I3 03

]
(186)

∂C p̃f

∂x̃b
= 03×6,

∂C p̃f

∂x̃in
= 03×24 (187)

The Jacobians of Cpf regarding to the IMU-camera spatial-temporal calibration state xIC are
written as:

∂C p̃f

∂x̃IC

=
[
∂C p̃f

∂δθIC

∂C p̃f

∂C p̃I

∂C p̃f

∂t̃d

∂C p̃f

∂t̃r

]
(188)

∂C p̃f

∂δθIC
= ⌊CI R̂I

GR̂
(
Gp̂f − Gp̂I

)
⌋ (189)

∂C p̃f

∂C p̃I
= I3 (190)

∂C p̃f

∂t̃d
= −C

I R̂
I
GR̂

(
⌊
(
Gp̂f − Gp̂I

)
⌋GI R̂Iω̂ − Gv̂I

)
(191)

∂C p̃f

∂t̃r
= −m

M

∂C p̃f

∂t̃d
(192)

Note that when computing the Jacobians for td and tr, we are using the following linearization:

G
I(t)R ≃ G

I(t̂)
R̂ exp(δθI) exp

(
−Iω̂t̃d +

m

M
Iω̂t̃r

)
(193)

GpI(t) ≃ Gp̂I(t̂) +
Gp̃I − Gv̂I t̃d +

m

M
Gv̂I t̃r (194)

where:

tI = tC − td = tC − t̂d − t̃d (195)

The Jacobians of Cpf regarding to the feature state xf is written as:

∂C p̃f

∂x̃f
=

∂C p̃f

∂δGp̃f
= C

I R̂
I
GR̂ (196)

Hence, the visual cost can be formulated:

CC ≜ ∥zC − hC(x)∥ 2
Q−1

C
(197)

We leverage pose interpolation to model the time offset and RS calibration. For example, if the
feature measurement is in the m-th row with total M rows in an image, we can find two bounding
poses k and k+1 based on the measurement time t. The corresponding time t is between two IMU
poses, tk ≤ t ≤ tk+1. We can then find the virtual IMU pose {GI(t)R,GpI(t)} between poses at k
and k + 1:

λ = (tI +
m

M
tr − tk)/(tk+1 − tk) (198)

G
I(t)R = G

Ik
R exp

(
λ log

(
G
Ik
R⊤G

Ik+1
R
))

(199)
GpI(t) = (1− λ)GpIk + λGpIk+1

(200)
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8 Observability Analysis

Observability analysis plays an important role in state estimation for VINS [47, 48]. This analy-
sis allows for determining the minimum measurements needed to determine the state and identify
degenerate motions which may degrade system performance by introducing additional unobserv-
able directions for certain parameters [49, 50, 51, 34]. As MVIS continues to gain popularity, the
observability analysis for such a system with full calibration parameters, especially IMU-IMU spa-
tiotemporal calibration, is needed to better understand the foundational properties of the underlying
system.

8.1 Reduced State Vector

Although the proposed MVIS supports arbitrary number of auxiliary inertial sensors and cameras,
for simplicity and without loss of generality, we use a typical system consisting of only one base
IMU, one auxiliary IMU, one auxiliary gyroscope and one RS camera as unique sensors for the
following observability analysis [52, 53, 9].

To simplify the ensuing derivation, we re-order the state vector and assume that the base IMU,
auxiliary inertial sensors are all kept as full states (i.e. including the full auxiliary inertial state).
All the states will be propagated forward with time, while the rigid body constraints and visual
measurements will be used to update these states. Specifically, the state vector includes all the
necessary parameters for the observability analysis as:

x =
[
x⊤
B x⊤

A x⊤
G x⊤

calib
Gp⊤

f

]⊤ (201)

≜
[
x⊤
I x⊤

in x⊤
Ia

x⊤
Ain

x⊤
Ig

x⊤
Gin

x⊤
Ex x⊤

Cin

Gp⊤
f

]⊤
(202)

Note that the auxiliary IMU and gyroscope states are:

xIa =
[
G
Ia
θ⊤ Gp⊤

Ia
Gv⊤

Ia
b⊤
Ag

b⊤
Aa

]⊤
(203)

xIg =
[
G
Ig
θ⊤ b⊤

Gg

]⊤
(204)

After propagation, the visual measurements and rigid body constraints between inertial sensors are
used to update the states with:

z =

zCzA
zG

 (205)

where zC denotes the visual cost [see Eq. (174)]. By dropping the time step k for simplicity, zA
and zG represent the rigid body pose constraints between auxiliary and base inertial sensors:

zA =

[
log
(
G
Ia
R⊤G

I R
I
Ia
R
)

GpIa − GpI − G
I R

IpIa

]
(206)

zG = log
(
G
IgR

⊤G
I R

I
IgR

)
(207)
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8.2 Linearized Observability Analysis

The overall state transition matrix can be written as:

Φ = Diag{ΦB, ΦA, ΦG, Φcalib, ΦF } (208)

=


ΦB 0 0 0 0
0 ΦA 0 0 0
0 0 ΦG 0 0
0 0 0 Φcalib 0
0 0 0 0 ΦF

 (209)

The detailed derivations for ΦB, ΦA, ΦG, Φcalib and ΦF can be found as:

ΦB =

[
ΦI Φin

0 I

]
, ΦA =

[
ΦIa ΦAin

0 I

]
(210)

ΦG =

[
ΦIg ΦGin

0 I

]
, Φcalib = I, ΦF = I (211)

The state transition of ΦB and ΦA have the same structure. We can grab the gyroscope part of
ΦB to get ΦG. Therefore, only ΦB is shown in this paper for clarity. The ΦI is:

ΦI =


Φ11 03 03 Φ14 Φ15

Φ21 I3 I3δt Φ24 Φ25

Φ31 03 I3 Φ34 Φ35

03 03 03 I3 03
03 03 03 03 I3

 (212)

where we have:

Φ11 =
Ik+1

Ik
R̂

Φ21 = −⌊Gp̂Ik+1
− Gp̂Ik −

Gv̂Ikδtk −
1

2
Ggδt2k⌋GIkR̂

Φ31 = −⌊Gv̂Ik+1
− Gv̂Ik −

Ggδtk⌋GIkR̂
Φ14 = −Jrδtk

I
wR̂D̂w

Φ24 =
G
Ik
R̂Ξ4

I
wR̂D̂w

Φ34 =
G
Ik
R̂Ξ3

I
wR̂D̂w

Φ15 = Jrδtk
I
wR̂D̂wT̂g

I
aR̂D̂a

Φ25 = −G
Ik
R̂
(
Ξ4

I
wR̂D̂wT̂g +Ξ2

)
I
aR̂D̂a

Φ35 = −G
Ik
R̂
(
Ξ3

I
wR̂D̂wT̂g +Ξ1

)
I
aR̂D̂a

Note that Jr ≜ Jr(θ̂k,k+1). The Φin is:

Φin =


Φin11 Φin12 Φin13 Φin14

Φin21 Φin22 Φin23 Φin24

Φin31 Φin23 Φin33 Φin34

03 03 03 03
03 03 03 03

 (213)
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where we have:

Φin11 = Jrδtk
I
wR̂HDw

Φin21 = −G
Ik
RΞ4

I
wR̂HDw

Φin31 = −G
Ik
RΞ3

I
wR̂HDw

Φin12 = −Jrδtk
I
wR̂D̂wT̂g

I
aR̂HDa

Φin22 =
G
Ik
R̂
(
Ξ2 +Ξ4

I
wR̂D̂wT̂g

)
I
aR̂HDa

Φin32 =
G
Ik
R̂
(
Ξ1 +Ξ3

I
wR̂D̂wT̂g

)
I
aR̂HDa

Φin13 = −Jrδtk
I
wR̂D̂wHTg

Φin23 =
G
Ik
R̂Ξ4

I
wR̂D̂wHTg

Φin33 =
G
Ik
R̂Ξ3

I
wR̂D̂wHTg

Φin14 = Jrδtk
I
wR̂D̂wT̂g⌊I â⌋IaR̂

Φin24 = −G
Ik
R̂
(
Ξ2 +Ξ4

I
wR̂D̂wT̂g

)
⌊I â⌋IaR̂

Φin34 = −G
Ik
R̂
(
Ξ1 +Ξ3

I
wR̂D̂wT̂g

)
⌊I â⌋IaR̂

The corresponding linearization Jacobians for Eq. (205) are:

∂z̃

∂x̃
=

∂z̃C
∂x̃
∂z̃A
∂x̃
∂z̃G
∂x̃

 =

HCB 0 0 HCC HCF

HAB HAA 0 HAC 0
HGB 0 HGG HGC 0

 (214)

where HZX denotes the Jacobians of measurement Z regrading to state parameter X and are defined
as: Jacobians of camera measurements are computed as:

HCB = Hpf

I
CR̂

⊤G
I R̂

⊤ [⌊Gpf − GpI⌋GI R̂ −I3 03×9 03×24

]
HCC =

[
HCCEx

HCCin

]
HCF = Hpf

I
CR̂

⊤G
I R̂

HCCEx
= Hpf

I
CR̂

⊤G
I R̂

⊤[HCC1 HCC2 HCC3 HCC4 HCC5 HCC6

]
HCC1 = 03×7

HCC2 = 03×4

HCC3 = ⌊Gpf − GpI − G
I R

I p̂C⌋
HCC4 = −G

I R̂

HCC5 =
GvI − ⌊Gpf − GpI⌋GI R̂Iω

HCC6 = −m

M
HCC5

HCCin =
∂z̃C
∂x̃Cin

Note that tI = tC − td = tC − t̂d − t̃d.
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The measurement Jacobians for auxiliary IMU constraints are computed as:

HAB =

[ Ia
I R̂ 03 03 03 03 03×24

G
I R̂⌊I p̂Ia⌋ −I3 03 03 03 03×24

]
HAA =

[
−I3 03 03 03 03 03×24

03 I3 03 03 03 03×24

]
HAC =

[
I3 03 −Iaω 03×20

03 −G
I R̂

GvI +
G
I R̂⌊Iω⌋IpIa 03×20

]
Note that tI = ta − tda = ta − t̂da − t̃da is used when computing the Jacobians for the tda . The
measurement Jacobians for auxiliary gyroscope constraints are computed as:

HGB =
[
Ig
I R̂ 03 03 03 03 03×24

]
HGG =

[
−I3 03 03 03

]
HGC =

[
03×7 I3 −Ig ω̂ 03×8 03×8

]
Note that tI = tg − tdg = tg − t̂dg − t̃dg is used when computing the Jacobians for the tdg .

8.2.1 Observability Matrix

The k-th row of the observability matrix can be written as:

Mk =

∂z̃C
∂x̃
∂z̃A
∂x̃
∂z̃G
∂x̃

Φ (215)

=

MCB 0 0 MCC MCF

MAB MAA 0 MAC 0
MGB 0 MGG MGC 0

 (216)

=

HCBΦB 0 0 HCCΦcalib HCFΦF

HABΦB HAAΦA 0 HACΦcalib 0
HGBΦB 0 HGGΦG HGCΦcalib 0

 (217)

For the component MCB, we have:

MCB = HCBΦB (218)

= HCB

[
ΦI Φin

0 I

]
(219)

= Hpf

I
CR̂

⊤G
I R̂

⊤ [Γ1 Γ2 Γ3 Γ4 Γ5 Γ6 Γ7 Γ8 Γ9

]
(220)

RPNG-2023-MVIS 29



where:

Γ1 = ⌊Gpf − GpIk⌋
G
Ik
R̂Φ11 −Φ21 = ⌊Gpf − GpI1 − GvI1δt−

1

2
Ggδt2⌋GI1R̂ (221)

Γ2 = −I3 (222)
Γ3 = −I3δt (223)

Γ4 = ⌊Gpf − GpIk⌋
G
Ik
R̂Φ14 −Φ24 (224)

Γ5 = ⌊Gpf − GpIk⌋
G
Ik
R̂Φ15 −Φ25 (225)

Γ6 = ⌊Gpf − GpIk⌋
G
Ik
R̂Φin11 −Φin21 (226)

Γ7 = ⌊Gpf − GpIk⌋
G
Ik
R̂Φin12 −Φin22 (227)

Γ8 = ⌊Gpf − GpIk⌋
G
Ik
R̂Φin13 −Φin23 (228)

Γ9 = ⌊Gpf − GpIk⌋
G
Ik
R̂Φin14 −Φin24 (229)

For the component MAB, we have:

MAB = HABΦB (230)

=

[
Ia
I R̂ 03 03 03 03 03×24

G
Ik
R̂⌊I p̂Ia⌋ −I3 03 03 03 03×24

][
ΦI Φin

0 I

]
(231)

=

[
Ia
I R̂Φ11 03 03

Ia
I R̂Φ14

Ia
I R̂Φ15

Ia
I R̂Φin11

Ia
I R̂Φin12

Ia
I R̂Φin13

Ia
I R̂Φin14

Γa1 Γa2 Γa3 Γa4 Γa5 Γa6 Γa7 Γa8 Γa9

]
=

[
Ia
I R̂ 03
03 I3

] [
Φ11 03 03 Φ14 Φ15 Φin11 Φin12 Φin13 Φin14

Γa1 Γa2 Γa3 Γa4 Γa5 Γa6 Γa7 Γa8 Γa9

]
(232)

where:

Γa1 =
G
Ik
R̂⌊I p̂Ia⌋Φ11 −Φ21 (233)

= ⌊GpIk +
G
Ik
R̂I p̂Ia − GpI1 − GvI1δt−

1

2
Ggδt2⌋GI1R̂ (234)

Γa2 = −I3 (235)
Γa3 = −I3δt (236)

Γa4 =
G
Ik
R̂⌊I p̂Ia⌋Φ14 −Φ24 (237)

Γa5 =
G
Ik
R̂⌊I p̂Ia⌋Φ15 −Φ25 (238)

Γa6 =
G
Ik
R̂⌊I p̂Ia⌋Φin11 −Φin21 (239)

Γa7 =
G
Ik
R̂⌊I p̂Ia⌋Φin12 −Φin22 (240)

Γa8 =
G
Ik
R̂⌊I p̂Ia⌋Φin13 −Φin23 (241)

Γa9 =
G
Ik
R̂⌊I p̂Ia⌋Φin14 −Φin24

For the component MAA, we have:

MAA = HAAΦA (242)

=

[
−I3 03 03 03 03 03×24

03 I3 03 03 03 03×24

] [
ΦIa ΦAin

0 I

]
(243)

=

[
−Φa11 03 03 −Φa14 −Φa15 −ΦAin11 −ΦAin12 −ΦAin13 −ΦAin14

Φa21 Φa22 Φa23 Φa24 Φa25 ΦAin21 ΦAin22 ΦAin23 ΦAin24

]
(244)
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For the component MGB, we have:

MGB = HGBΦB (245)

=
[
Ig
I R̂ 03 03 03 03 03×24

] [ΦI Φin

0 I

]
(246)

=
Ig
I R̂

[
Φ11 03 03 Φ14 Φ15 Φin11 Φin12 Φin13 Φin14

]
(247)

For the component MGG, we have:

MGG = HGGΦG (248)

=
[
−I3 03 03 03

] [ΦIg ΦGin

0 I

]
(249)

Due to Φcalib = I and ΦF = I, we have:

MCC = HCC (250)
MAC = HAC (251)
MGC = HGC (252)
MCF = HCF (253)

By closely inspecting the observability matrix, we have the following Lemma:

Lemma 1. The proposed MVIS has four unobservable directions corresponding to the global yaw
rotation and the global translation:

N =



I1
GRGg 03

−⌊GpI1⌋Gg I3
−⌊GvI1⌋Gg 03

030×1 030×3

−−− −−−
Ia1
G RGg 03

−⌊GpIa1
⌋Gg I3

−⌊GvIa1
⌋Gg 03

030×1 030×3

−−− −−−
Ig1
G RGg 03
09×1 09×3

−−− −−−
027×1 027×3

−−− −−−
−⌊Gpf⌋Gg I3



(254)

These four unobservable directions are similar to the 4 classical unobservable directions for a
monocular VINS system [52]. From this lemma, we can conclude that the system observability will
not be improved by simply adding more inertial sensors (IMU or gyroscopes). It should also be
pointed out that the velocity of IMU state will become unobservable if no visual measurements to
static landmarks are available. Hence, without cameras, naively adding auxiliary IMUs will not
significantly improve the system localization accuracy due to lack of global constraints to the base
IMU velocity. It can be observed that the calibration parameters, including xin, xAin , xGin and
xEx, are highly related to the sensor motion. Under fully excited motions, these parameters are
observable, which can be seen from our simulation results in Section 10.1.
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Table 2: Degenerate motions with related unobservable parameters for auxiliary IMU and gyroscope.

Motion Types Auxiliary IMU Auxiliary Gyroscope

No Rotation IpIa
I
Ig
R and tdg

One-axis Rotation IpIa along rot. axis I
Ig
R along rot. axis

Constant Iω IpIa along rot. axis I
Ig
R along rot. axis, tdg

Constant Iω and GvI
IpIa along rot. axis, tda I

Ig
R along rot. axis, tdg

Constant Iω and Iv IpIa along rot. axis I
Ig
R along rot. axis, tdg

9 Degenerate Motion Analysis

While the degenerate motions for the IMU-camera spatiotemporal parameters, IMU intrinsics and
camera intrinsics have been studied [50, 34, 9], in this paper, we for the first time study the
degenerate motions for the IMU-IMU/Gyroscope spatiotemporal calibration of MVIS.

9.1 Spatiotemporal Calibration of Auxiliary Inertial Sensors

In particular, we have identified the degenerate motions for the spatiotemporal calibration between
the auxiliary inertial sensors and the base IMU, as summarized in Table 2, which will be explained
in detail below.

9.1.1 No Rotation

If the MVIS undergoes 3D motion but without rotation, the translation IpIa between the auxiliary
and base IMUs, the rotation I

Ig
R and time offset between the auxiliary gyroscope and the base IMU,

will be unobservable. The unobservable directions NNR are given by:

NNR =



039×3 039×3 039×1

−−− −−− −−−
03 03 03×1

I3 03 03×1

033×3 033×3 033×1

−−− −−− −−−
03 I3 03×1

09×3 09×3 09×1

−−− −−− −−−
03 03 03×1
I1
GR 03 03×1

01×3 01×3 0
03 I3 03×1

01×3 01×3 1
016×3 016×3 016×1

−−− −−− −−−
03 03 03×1



(255)

9.1.2 One-Axis Rotation

If the system undergoes 3D motion but with only one-axis rotation (which is common for aerial
and ground vehicles), the translation IpIa between the auxiliary and base IMUs, the rotation I

Ig
R
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between the auxiliary gyroscope and the base IMU will be unobservable, along with the rotation
axis k. Specifically the additional unobservable directions are given by:

NOA =



039×1 039×1

−−− −−−
03×1 03×1

G
I1
RI1k 03×1

033×1 033×1

−−− −−−
03×1

Ig1k
09×1 09×1

−−− −−−
03×1 03×1
I1k 03×1

0 0
03×1

Ig1k
0 0

016×1 016×1

−−− −−−
03×1 03×1



(256)

Note that we, for the first time, explicitly found that one-axis rotation will cause the rotation
calibration between the auxiliary gyroscope and base IMU to become unobservable. We verify this
finding with simulations in Section 10.2.

9.1.3 Constant Local Angular Velocity

If the MVIS undergoes constant local angular velocity with random 3D translation for the base IMU,
the translation IpIa between the base and auxiliary IMUs is still unobservable along the rotation
axis. In addition, the rotation I

Ig
R and the time offset tIg between the base IMU and the auxiliary

gyroscope become unobservable. The unobservable directions NCLAV are given by:

NCLAV =



039×1 039×1 039×1

−−− −−− −−−
03×1 03×1 03×1

G
I1
RI1ω 03×1 03×1

033×1 033×1 033×1

−−− −−− −−−
03×1

Ig1ω Ig1ω
09×1 09×1 09×1

−−− −−− −−−
03×1 03×1 03×1
I1ω 03×1 03×1

0 0 0
03×1

Ig1ω 03×1

0 0 −1
016×1 016×1 016×1

−−− −−− −−−
03×1 03×1 03×1



(257)
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9.1.4 Constant Local Angular and Global Linear Velocity

If the MVIS undergoes constant Iω and constant GvI for base IMU, the translation and time offsets
between the base and auxiliary IMUs, the rotation and time offset between the base IMU and the
auxiliary gyroscope become unobservable. The unobservable directions NCLAGV are given by:

NCLAGV =



039×1 039×1 039×1 039×1

−−− −−− −−− −−−
03×1 03×1 03×1 03×1

G
I1
RI1ω 03×1 03×1 03×1

033×1 033×1 033×1 033×1

−−− −−− −−− −−−
03×1 03×1

Ig1ω Ig1ω
09×1 09×1 09×1 09×1

−−− −−− −−− −−−
03×1

Ia1ω 03×1 03×1
I1ω G

I R̂
⊤GvI1 + ⌊I1ω⌋IpIa 03×1 03×1

0 1 0 0
03×1 03×1

Ig1ω 03×1

0 0 0 −1
016×1 016×1 016×1 016×1

−−− −−− −−− −−−
03×1 03×1 03×1 03×1



(258)

9.1.5 Constant Local Angular and Linear Velocity

When the Iω and Iv are constant for the base IMU, the time offset td between the base IMU
and camera, as well as the time offset tdg between the base IMU and the gyroscope are both
unobservable. However, the time offset tda between the base and auxiliary IMUs is still observable
(see Fig. 6), which is unexpected. This is due to the fact that the local constant velocity assumption
will be invalid for the auxiliary IMU if the base IMU is undergoing constant local linear and angular
velocity. The local angular velocity and acceleration of the auxiliary IMU can be represented as:

Iaω = Ia
I RIω (259)

Iaa = Ia
I R

(
Ia+ ⌊Iα⌋IpIa + ⌊Iω⌋⌊Iω⌋IpIa

)
(260)

where Iα refers to the angular acceleration of the base IMU. If the base IMU undergoes constant
local linear and angular velocity motion, the angular velocity of the auxiliary IMU Iaω is also
constant [see Eq. (259)]. The Ia and Iα of the base IMU should be zeros. Hence, Eq. (260) yields:

Iaa = Ia
I R

(
⌊Iω⌋⌊Iω⌋IpIa

)
(261)

If Iω is constant but not zero, the local linear acceleration Iaa should not be zero. This breaks
the local constant linear velocity assumption for the auxiliary IMU. Furthermore, we find that the
norm of Iav is constant:

Iav = Ia
I R

(
Iv + ⌊Iω⌋IpIa

)
(262)

But the non-zero acceleration Iaa will cause the bearing change of local velocity, which makes the
time offset between the base and auxiliary IMUs observable. This is further verified through our
simulation results (see Fig. 6).
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Table 3: Summary of basic degenerate motions for auxiliary inertial intrinsics calibration. Any combinations of these
unit motion primitives are degenerate. Note that dA∗ is column-wise element from DA∗, with dGw is column-wise
element from DGw. tAgi , i = 1 . . . 9 are the elements from TAg for g-sensitivity.

Motion Types Nullspace Dim. Unobservable Parameters

constant Awω1 1 dAw1

constant Awω2 2 dAw2 , dAw3

constant Awω3 3 dAw4 , dAw5 , dAw6

constant Aaa1 3 dAa1 , pitch and yaw of Ia
Aa

R

constant Aaa2 3 dAa2 , dAa3 , roll of Ia
Aa

R

constant Aaa3 3 dAa4 , dAa5 , dAa6

constant Iaa1 3 tAg1 , tAg2 , tAg3

constant Iaa2 3 tAg4 , tAg5 , tAg6

constant Iaa3 3 tAg7 , tAg8 , tAg9

constant Gwω1 1 dGw1

constant Gwω2 2 dGw2 , dGw3

constant Gwω3 3 dGw4 , dGw5 , dGw6

Table 4: Simulation parameters and prior standard deviations that perturbations of measurements and initial states
were drawn from.

Parameter Value Parameter Value

IMU Dw 0.003 IMU Da 0.003
Rot. atoI (rad) 0.003 IMU Tg 0.001

Gyro. Noise
(rad s−1

√
Hz−1)

1.696e-04
Gyro. Bias

(rad s−2
√
Hz−1)

1.939e-05

Accel. Noise
(ms−2

√
Hz−1)

2.000e-3
Accel. Bias

(ms−3
√
Hz−1)

3.000e-3

Focal Len. (px/m) 1.0 Cam. Center (px) 1.0
d1 and d2 0.002 d3 and d4 0.002

Rot. CtoI (Hz) 0.004 Pos. IinC (m) 0.008
Pixel Proj. (px) 1 Cam-IMU Timeoff (s) 0.008

IMU-IMU Timeoff (s) 0.003 Gyro-IMU Timeoff (s) 0.003
Rot. IatoI (rad) 0.003 Pos. IainI (m) 0.005
Cam Freq. (Hz) 10/10 IMU Freq. (Hz) 250/300/200

9.2 Intrinsics for Auxiliary Inertial Sensors

In our previous work [34, 9], the degenerate motions of IMU intrinsics for monocular VINS have been
studied. In this work, we have found that the degenerate motion primitives in [9] still hold for the
auxiliary IMU intrinsics with our inertial model choice (see Table 3). Note that fully excited motions
are needed in order to make all intrinsic parameters observable for the auxiliary IMUs/gyroscopes.

10 Simulation Results

The simulator, which is provided within the OpenVINS project [6] along with the multi-IMU and RS
extension from [8] and IMU intrinsic extension [9], is leveraged to provide synthetic measurements
with perfect groundtruth for verification of the proposed MVIS under different motion conditions.
In the simulation, one base IMU IMUb, one auxiliary IMU IMUa0, one auxiliary gyroscope IMUa1,
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Figure 2: Simulated trajectories. Top: calib_3d with fully excited 3D motion, total length: 89.4m; Middle:
tum_room with 1 axis rotation and 3D translation, total length: 134.5m; Bottom: circle_planar with circular
planar motion (constant z and only yaw rotation), total length: 157.1m. The green triangle and red circle denote
the beginning and ending of these trajectories, respectively.
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Figure 3: Simulation results for fully-excited motion. All the cameras (CAM0 and CAM1) related parameters converge
nicely. 3σ bounds (dashed line) and estimation errors (solid line) are plotted for five different runs (shown in different
colors) with different initial calibration perturbations.
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Figure 4: Simulation results for fully-excited motion. All the base IMU (IMUb) and auxiliary IMUs (IMUa0, IMUa1)
related parameters converge nicely. 3σ bounds (dashed line) and estimation errors (solid line) are plotted for five
different runs (shown in different colors) with different initial calibration perturbations.
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Figure 5: Simulation results for One-axis motion. The translation of CAM0-IMUb (y component) and IMUa0-IMUb (z
component), the rotation of IMUa1-IMUb (z component), the dw1, dw2 and dw3 of IMUb, IMUa0 and IMUa1 show inability
to converge (sigma bound does not decrease due to no information gain). 3σ bounds (dashed line) and estimation
errors (solid line) are plotted for five different runs (shown in different colors) with different initial calibration per-
turbations.

Figure 6: Simulation results for Circular-planar motion. The translation of CAM0-IMUb, CAM1-IMUb, IMUa0-IMUb, the
rotation of IMUa1-IMUb, the time offset of CAM0-IMUb, CAM1-IMUb and IMUa1-IMUb all show inability to converge (sigma
bound does not decrease due to no information gain). Note that the RS readout time of CAM1 and the time offset of
IMUa0-IMUb converge slower due to less motion excitation. 3σ bounds (dashed line) and estimation errors (solid line)
are plotted for five different runs (shown in different colors) with different initial calibration perturbations.
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Figure 7: Simulation results for Circular-planar motion. The gyroscope and acceleration related parameters (Dw,
Da and Tg) for both base and auxiliary IMUs do not converge or converge much slower than the case of fully-excited
motions. 3σ bounds (dashed line) and estimation errors (solid line) are plotted for five different runs (shown in
different colors) with different initial calibration perturbations.
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one global shutter (GS) camera CAM0 and one rolling shutter (RS) camera CAM1 are simulated. Note
that both cameras are simulated with 10hz frame rates. The basic configuration of the simulator is
listed in Table 4. The three trajectories used for the simulation Fig. 2 are as follows:

• Fully-excited motion (left of Fig. 2): All axes of the accelerometer and gyroscope are fully
excited with a general 3D handheld trajectory.

• One-axis motion (middle of Fig. 2): The sensor suite moves in 3D space but with only yaw
rotation. The trajectory is modified based on tum_room1 from [33].

• Circular-planar motion (right of Fig. 2): The sensor suite moves in x-y plane with constant
local angular and linear velocities.

Specifically, we first build a B-spline with trajectory keyframes of the base IMU trajectory. Then,
we can compute the acceleration of base IMU by calculating double derivatives for the position
component of the B-spline at specified time stamp. We leverage rigid body constraints between
base and auxiliary IMU to simulate the auxiliary IMU readings. The base IMU acceleration can
be transferred to the auxiliary IMU frame with the groundtruth angular velocity and acceleration,
which are also computed from derivatives of base IMU B-spline. The angular velocity of the auxiliary
IMU can be simply computed with angular velocity from base IMU and the rigid rotation between
based IMU and auxiliary IMU. Then white Gaussian noises are added to the auxiliary IMU readings
based on Eq. (1) and (2).

To simulate RS visual bearing measurements, we follow the same logic in [54, 8, 9]. Static
environmental features are first generated along the trajectory at random depths and bearings.
Then, for a given imaging time, we project each feature in view into the current image frame using
the true camera intrinsic and distortion model and find the corresponding observation row. Given
this projected row and image time, we can find the pose at which that RS row should have been
exposed. We can then re-project this feature into the new pose and iterate until the projected row
does not change (which typically requires 2-3 iterations). We now have a feature measurement which
occurs at the correct pose given its RS row. This measurement is then corrupted with white noise.
The imaging timestamp corresponding to the starting row is then shifted by the true IMU-Camera
time offset td to simulate cross-sensor delay. In the following simulations, the RPNG IMU model [see
Section 3.1] is used to be aligned with the analysis.

10.1 Fully-Excited Motion

We first evaluate the proposed system on a general 3D handheld trajectory, see Fig. 2, which fully
excites all 6 axes of the sensor platform. To save space, only selected parameters are presented, but
all parameters are perturbed and estimated during our simulation runs. The camera related results
are shown in Fig. 3 while the IMU related results are shown in Fig. 4. For each figure, there are
five different runs with different initial state perturbations.

It is clear that all parameters are able to converge towards the true value within the first 20-40
seconds of the trajectory, which verifies our conclusion that all the calibration parameters for MVIS
are observable given fully-excited motions. These results also verify that the proposed MVIS indeed
is able to perform calibration of all parameters for visual and inertial sensors.

10.2 Degenerate One-Axis Motion

We now perform a simulation where the trajectory only exhibits one-axis rotation about the global
z-axis to verify our identified degenerate motion, see Fig. 2. Shown in Fig. 5, multiple parameters
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are unable to converge with either estimation errors or estimation uncertainties (3σ bounds). This
matches the parameters which we have identified as unobservable under this motion. We can see that
the 3 parameters dw1, dw2 and dw3 for both the base IMU IMUb, auxiliary IMU IMUa0, and auxiliary
gyroscope IMUa1 are unable to be calibrated. Additionally, the y component for the rigid position
between the camera to base IMU (CAM0-IMUb Pos.) cannot converge at all. The z component for
the position of the auxiliary IMU to base IMU (IMUa0-IMUb Pos.) is unable to be calibrated as
expected. Note that the y component of IpC and the z component of IpIa are all along the rotation
axis which is degenerate.

Furthermore, it can be seen that we are unable to calibrate a portion of the relative rotation
between the base IMU and auxiliary gyroscope (IMUa1-IMUb Ori.) due to one-axis rotation, which
can be calibrated nicely in the fully-excited motion case. This further confirms our degenerate
motion analysis summarized in Table 2.

10.3 Degenerate Circular-Planar Motion

We also perform a simulation where the sensors follow a circular-planar motion shown in Fig. 2.
This is a typical example motion of constant angular and linear velocity. The translation and the
time offset of CAM0-IMUb, CAM1-IMUb, the translation of IMUa0-IMUb and the orientation of IMUa1-
IMUb are not observable. Shown in Fig. 6, their 3σ bounds and estimate errors are kept as almost
straight lines and do not converge at all. These results further verifies our identified degenerate
motions shown in Table 2.

The time offset between auxiliary gyroscope and based IMU (IMUa1-IMUb Toff) also are unable
to be calibrated, while the time offset between auxiliary IMU to base IMU (IMUa0-IMUb Toff) is
still observable. This can be seen by the estimation errors converging in Fig. 6 and thus verifies our
degenerate motion analysis in Section 9.1.5. Note that the rolling shutter readout time of the CAM1
converges quite slowly, given that the sensor motion is not fully excited.

The calibration results for IMU related intrinsics are shown in Fig. 7. It is clear that the
gyroscope related parameters Dw and the accelerometer related parameters Da do not converge at
all. The convergence of g-sensitivity Tg also becomes much worse compared to fully excited motion
in Fig. 4 which results from fully-excited motions.

11 Experimental Results

The proposed self-calibration system is further evaluated using our own visual-inertial sensor rig
(VI-Rig) as shown in Fig. 8. Specifically, it contains a MS-GX-25, MS-GX-35, Xsens MTi 100,
FLIR blackfly camera, RealSense T265 tracking camera (which contains an integrated BMI055
IMU along with a fisheye stereo global shutter camera), and 640x480 ELP-960P2CAM-V90-VC
USB 2.0 RS-stereo camera. We perform three sets of experiments3.

• Fully-excited motion with 4 IMUs + 3 GS Cameras.

• Fully-excited motion with 4 IMUs + 2 GS Cameras + 2 RS Cameras.

• Planar motion with 4 IMUs + 2 GS cameras.

In these experiments, we evaluate the intrinsic calibration with Kalibr model [see Section 3.1],
in order to facilitate a direct comparison to Kalibr–the calibration toolbox [21]. We also investigate
if the joint calibration performance changes with different number of IMU/Camera sets. In addition,

3Datasets are available at https://openmvis.com/.
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Figure 8: The self-assembled sensor rigs in real-world experiments, containing one Mircostrain GX-25, one MircroS-
train GX-35 , one MTI Xsens IMU, one BalckFly camera, one IntelRealsense T265 tracking camera (with a GS fisheye
stereo camera and an BMI055 IMU inside) and one ELP stereo RS camera.

planar motion, one of the most commonly seen degenerate motions, is also investigated to show its
effects on calibration. The results further verify our degeneration motion analysis and has significant
practical implications on practitioners performing calibration on constrained autonomous platforms
(e.g. aerial or ground vehicles).

The boxplots are used to demonstrate the calibration results for the proposed MVIS and Kalibr.
When drawing the boxplots for the translation part of extrinsics, the camera intrinsics and time
offsets, we use the average estimates of the MVIS with all available sensors as reference value and
then compute the error of each estimate from Kalibr or MVIS to this reference. When drawing the
boxplots for the orientation extrinsic, we select the first estimate of MVIS with all available sensors
for reference value. The middle line of each boxplot indicates the average errors while the red star +
indicates outliers. IMU intrinsics are computed relative to the “ideal” inertial model, with identity
for all matrices except for g-sensitivity, which is set as all zeros.

11.1 4 IMUs + 3 GS Cameras

All the four IMUs, FLIR blackfly camera and the GS stereo camera from RealSense T265 are
used for this evaluation. All cameras used in this experiments are not rolling shutter to ensure
fair comparison against the baseline Kalibr [21] which only supports IMU-Camera calibration with
global shutter cameras. Total 10 datasets were collected with an AprilTag board, on which both the
proposed system and the Kalibr calibration toolbox were run to evaluate the calibration accuracy
and repeatability statistics on all calibration parameters. During data collection, all 6-axis motion
of the VI-Rig were excited to avoid degenerate motions for calibration parameters.

11.1.1 Calibration with Different Number of Cameras

When running Kalibr, all the IMUs and cameras are used to achieve the best calibration results
from Kalibr. When running our proposed MVIS, we use all the four IMUs with 1/2/3 camera,
respectively. In this way, we can evaluate how the number of used cameras affect the calibration
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Figure 9: Calibration Results for CAM0 and four IMUs related parameters over 10 datasets collected with Intel
Realsense T265 (GS), FLIR Blackfly camera (GS) and four IMUs. The proposed MVIS was run with one (green),
two (black), and three (blue) of the cameras. The baseline Kalibr (magenta) was run on all three cameras and all
four IMUs. Note that the calibration convergence of camera intrinsics and camera to IMU translation are improved
if more cameras are used.

performance.
The final converged estimates of the calibration parameters from both systems on these 10

datasets can be shown in the box plots in Fig. 9 and 10. The proposed MVIS was run with one
(green), two (black), and three (blue) of the cameras. The baseline Kalibr (magenta) was run on all
three cameras. The x-axis of Fig. 10 row denotes the base IMU (GX-25 IMUb) as b and auxiliary
IMU (GX-35 IMUa0, Xsens IMUa1, T265 IMU IMUa2) as 0, 1 and 2 respectively. Note that the
camera intrinsics are required to be fixed for Kalibr when performing IMU-Camera calibration.
Hence there is only one value for each camera intrinsics for Kalibr in Fig. 9.

The range of the boxplot in the figure indicates the convergence repeatability of calibration
parameters. The proposed MVIS needs an initial guess for the calibration parameters to start the
optimization and the initial guess distribution are shown in the first row of Fig. 9 for the proposed
method. The initial guess for d2 of CAM0 distortion model is within ±0.5while the final estimated
values are between 0 and 0.1. The initial guess for time offset for CAM0-IMUb is within ±5ms, while
the final converged values from the proposed MVIS are most cases around ±0.5ms. These results
show that the calibration parameters can converge robustly with the proposed MVIS.

It can be observed from Fig. 9 and 10 that the calibration estimation convergence of IMU/camera
intrinsics and CAM0-IMUb translation are better in blue color than those in green or black colors,
which indicate that more cameras can be used to improve overall calibration convergence. This is
probably due to improved visual feature estimates from longer feature tracks or wider field-of-view
due to multi-view constraints when more cameras are used in the experiment.

11.1.2 Comparison with Kalibr

By comparing the mean values of each boxplot in Fig. 9 and 10, it can be seen that the MVIS
can achieve comparable calibration results to Kalibr, which verifies the calibration accuracy of the
proposed MVIS.
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Figure 10: Calibration Results for CAM0 and four IMUs related parameters over 10 datasets collected with Intel
Realsense T265 (GS), FLIR Blackfly camera (GS) and four IMUs. The proposed MVIS was run with one (green),
two (black), and three (blue) of the cameras. The baseline Kalibr (magenta) was run on all three cameras and all
four IMUs. The x-axis of figures denotes the base IMU (IMUb) as b and auxiliary IMU (IMUa0-IMUa2) as 0, 1 and 2
respectively. Note that the calibration convergence of IMU intrinsics are improved if more cameras are used.
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Figure 11: Calibration results over 15 different datasets collected with Intel Realsense T265 (GS), ELP-960P2CAM-
V90-VC USB 2.0 (RS, 640x480) and four IMUs. The proposed MVIS (blue, using all the sensors) and Kalibr baseline
(magenta, using only T265 cameras with all the IMUs) statistics are reported. The top two x-axis denote the two
global shutter cameras (CAM0, CAM1) as 0 and 1, respectively; The bottom two x-axis denotes the base IMU (IMUb) as
b, and auxiliary IMUs (IMUa0, IMUa1 and IMUa2) as 0, 1 and 2, respectively.
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Figure 12: Calibration results over 15 different datasets collected with Intel Realsense T265 (GS), ELP-960P2CAM-
V90-VC USB 2.0 (RS, 640x480) and four IMUs. The proposed MVIS (blue, using all the sensors) and Kalibr rolling
shutter baseline (magenta, using only the RS cameras with all IMUs) statistics are reported. The top two x-axis
denote the two rolling shutter cameras (CAM2, CAM3) as 2 and 3, respectively; The bottom two x-axis denotes the base
IMU (IMUb) as b, and auxiliary IMUs (IMUa0, IMUa1 and IMUa2) as 0, 1 and 2.

Figure 13: Temporal calibration results over 15 different datasets with Intel Realsense T265 (GS), ELP-960P2CAM-
V90-VC USB 2.0 (RS, 640x480) and four IMUs. The proposed MVIS (blue) and Kalibr rolling shutter baseline
(magenta) statistics are reported. The x-axis of the left 3 figures denotes the two global shutter camera CAM0, CAM1,
two rolling shutter camera CAM2, CAM3. The x-axis of the right figure denotes the time offsets between the base IMU
(IMUb), and auxiliary IMUs (IMUa0, IMUa1, IMUa2).
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Figure 14: Calibration results over 15 different datasets with Intel Realsense T265 and four IMUs. The proposed
MVIS with a base IMU and only gyroscopes of the 3 auxiliary IMUs (black), MVIS with a base IMU and 3 auxiliary
IMUs (blue) and Kalibr baseline (magenta) statistics are reported. The x-axis denotes the base IMU (IMUb) and
auxiliary IMUs (IMUa0, IMUa1, IMUa2) for all algorithms.
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11.1.3 Comparing IMU Intrinsic Quality

By evaluating the IMU calibration results across the four IMUs of IMUb, IMUa0, IMUa1 and IMUa2
(denoted as b, 0, 1, 2 in the second and third row in Fig. 10) used in the experiments, we clearly see
that IMUa2, a relatively low-cost BMI055 IMU, demonstrates larger scale correction for gyroscope
and accelerometer than other three high-end IMUs (GX-25 IMUb, GX-35 IMUa0 and Xsens IMUa1).
This is expected as the IMUb, IMUa0 and IMUa1 are supposed to have more stable and sophisticated
factory calibration than IMUa2. This result, aligned with our previous work for single-IMU-camera
calibration [9], further validates the proposed MVIS can generate reasonable and accurate calibration
for IMUs.

Note that we have also implemented both numerical and analytical Jacobians for the proposed
MVIS. The numerical and analytical Jacobians can achieve similar accuracy results but with 10-14%
running time saving when using analytical Jacobians.

11.2 4 IMUs + 2 GS Cameras + 2 RS Cameras

All the four IMUs, GS stereo camera from RealSense T265 and ELP RS stereo camera are used in
this evaluation. Both GS and RS cameras are used in this experiment to show that our proposed
MVIS supports full-parameter joint calibration with GS and RS cameras, while Kalibr does not
support joint calibration of IMU and RS cameras, nor GS and RS cameras. Total 15 datasets were
collected with an AprilTag board, on which both the proposed MVIS and the Kalibr calibration
toolbox were run to report calibration accuracy and repeatability statistics. During data collection,
all 6-axis motion of the VI-Rig were excited to avoid degenerate motions for calibration parameters.

11.2.1 Calibration for IMU and GS/RS

During evaluation, all the GS/RS cameras and IMUs are used for the proposed MVIS. Since Kalibr
does not support hybrid calibration of GS and RS cameras, we first run Kalibr with all four IMUs and
only GS stereo camera from RealSense T265 (CAM0&CAM1). The results with boxplots are presented
in Fig. 11. Then, we run Kalibr with all four IMUs and ELP RS stereo camera (CAM2&CAM3)
using a Kalibr extension [25]. The results are presented in Fig. 12. Note that in the evaluations,
the left&right cameras from the stereo of RealSense T265 are denoted as CAM0&CAM1, while the
left&right cameras from ELP RS stereo are denoted as CAM2&CAM3. In this experiment, we did
camera calibration for each collected dataset with Kalibr. Therefore, we can have the statistics for
the camera intrinsic estimates in Fig. 11 and 12 , from which, we can see that the mean estimates of
both the IMU and camera related parameters are similar for both the proposed MVIS and Kalibr.

The boxplot ranges of camera and IMU related parameters from the proposed MVIS are much
smaller than those of the Kalibr, which shows that MVIS is able to achieve much better estimation
convergence and repeatability than Kalibr, especially for the case of using ELP RS cameras. This
result verifies that the proposed MVIS can handle the joint calibration of IMU-GS/RS cameras,
which is missing from Kalibr. In this experiment, MVIS used both GS/RS cameras while the
Kalibr is evaluated on only GS or only RS cameras. Hence, this experiment further proves that
the joint calibration of multiple sensors (i.e. cameras) does improve the calibration accuracy and
repeatability.

It is interesting to see that the IMU calibration results (the scales for Dw and Da) between these
two experiments (Fig. 10 in Section 11.1 and Fig. 11 or Fig. 12 in Section 11.2) are very similar.
This further validates the stability of the proposed MVIS.
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11.2.2 Evaluation of Multiple Gyroscopes Calibration

We further evaluate the proposed MVIS with multiple auxiliary gyroscopes. With the same 15
datasets, all cameras, base IMU (GX-25 IMUb) and the gyroscopes of three auxiliary IMUs (GX-35
IMUa0, Xsens IMUa1 and T265 IMU IMUa2) are used for evaluation with MVIS. The calibration
results of MVIS with these auxiliary gyroscopes (in black), compared to the MVIS (in blue) and
Kalibr (in magenta) with full auxiliary IMUs, are shown in Fig. 14. Note that the auxiliary
gyroscope does not contain I

wR. Hence, we set I
wR = I3 as default.

It is clear from the results that MVIS with multiple auxiliary gyroscopes still can achieve almost
the same estimates for gyroscope scales and time offsets as MVIS and Kalibr with full auxiliary
IMUs.

At the same time, we can also see that the calibration of rotation between auxiliary gyroscope
and base IMU (the second row of Fig. 14) from MVIS with multiple gyroscopes, is slightly worse
than that of MVIS and Kalibr with full IMUs, especially for IMUa2. This might be due to the fact
that accelerometer measurement can benefit the extrinsic calibration between IMUs. We also want
to point out that the rotation calibration difference is smaller than 0.5◦, which is not significant.

11.2.3 Temporal Calibration

The temporal calibration, including time offsets and rolling shutter readout time, are presented in
Fig. 13, which shows the results using base IMU and all the full auxiliary IMUs. The 0, 1, 2 and 3
from the CAM Toff and Readout refers to CAM0 - CAM3. From Fig. 13, it is clear that the time offset
calibration is almost the same for the proposed MVIS and the Kalibr. The readout time calibration
errors are all within 2ms.

From the results, we can also find out that the triggering time offset of the RealSence T265 is
not stable. As can be seen from the left of Fig. 13, there are outliers as large as 30ms between
the base IMU IMUb and the right camera of T265. Similarly, the time offset of the IMU from T265
(IMUa2) to base IMU (IMUb) is also slightly unstable from the estimates of MVIS and Kalibr, as
outliers (red crosses) in right of Fig. 13 are obvious. Note that the 0, 1 and 2 in the plot of IMU
Toff from right of Fig. 13 denote the time offsets of IMUa0, IMUa1 and IMUa2 to IMUb, respectively.

As shown in the right of Fig. 13, the time offset between based IMU IMUb and the auxiliary IMU
IMUa2 (BMI055 from T265) also has 10ms offsets (from near -5ms to 5ms). This is probably due
to the build-in drivers of this relatively low-cost sensor (T265). This figure shows that the estimate
results from Kalibr (magenta) and the proposed MVIS (blue) can identify the temporal calibration
problems of T265, which validates that the proposed MVIS can be used to identify the temporal
instability of T265 and provide reliable calibration results.

11.3 Planar Motion with 4 IMUs + 2 GS Cameras

We further verify the degenerate motions with a dataset collected under planar motion. All four
IMUs and the GS stereo camera from RealSense T265 are used for data collection. When collecting
data, the VI-Rig is put on a chair with wheels and moved about the room in planar motion. The
proposed MVIS is run on this dataset 4 times with different perturbations to the initial values of
IMU-IMU translations.

Under planar motion, the rotation axis, roughly along the local z-axis for the base IMU, is fixed
for the VI-Rig. Hence, the IMU-IMU translation along the rotation axis and the dw1, dw2, dw3 from
Dw should be unobservable. The calibration results for these parameters can be clearly seen in Fig.
15 and they diverge erroneously during optimization.
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As a comparison, we use the same sensor rig and same perturbations to IMU-IMU translation
to run the proposed MVIS under fully-excited motions. The calibration results are shown in Fig.
16. It is clear that all these calibration parameters in Fig. 16, when fully-excited motions are given,
can converge nicely compared to Fig. 15.

11.4 Discussion on Estimation Convergence

From the extensive simulations and real world experiments, we find that the convergence of the
proposed MVIS with full-parameter calibration can be affected in several aspects. Firstly, based
on our analysis, we need fully excited motions (3D rotation and 3D translation) for all the sensors
to make sure all the related calibration parameters can converge (see Section 10.1, 11.1 and 11.2).
If the MVIS undergoes any degenerate motions listed in Section 9, some calibration parameters’
estimates are unlikely to converge (see Section 10.2, 10.3 and 11.3).

Given fully excited motions, the initial guess and prior information for these calibration param-
eters are also crucial for estimator convergence. As we mentioned in previous sections, the IMU
intrinsics are most cases not large in values. Hence, they are initialized with ideal intrinsic values.
The camera intrinsic and distortion parameters are usually initialized based on the camera cali-
bration using OpenCV [35] or Kalibr [21]. But the proposed MVIS can handle inaccurate camera
intrinsics as shown in Fig. 9. For the IMU-IMU/Camera extrinsics, the initial orientation part
is decided manually while the translation part is hand measured. This can be improved by using
trajectory alignment of visual trajectories and IMU integrated trajectory segments. The temporal
related parameters are most cases initialized through orientation alignment.

The more sensors are used, the more calibration parameters will be kept in the state vector for
the proposed MVIS. This will pose challenges to convergence of the proposed MVIS when estimating
all the related calibrations at once, especially when the initial guesses for these calibrations are not
of good quality. To address it, we add the cost terms from auxiliary sensors gradually, after base
inertial sensor related parameters converge. Throughout our experiments, we first only optimize
the base IMU and the cameras related costs until the landmark feature estimates converge. After
that, the auxiliary IMUs/gyroscopes cost terms will be added to the NLS for solving their related
calibration parameters. Actually, from our experiences on the data collected using VI-Rig, 5-10s of
the data with fully-excited motions are good enough for the estimates of landmarks to converge.

12 Conclusions and Future Work

In this paper, we have developed a multi-visual-inertial system (MVIS) estimation algorithm which
can fuse multiple IMUs, gyroscopes and GS/RS cameras, with a special focus on full-calibration of
all intrinsics, extrinsics, and temporal parameters (including time offsets and readout times for RS
cameras). In particular, we proposed ACI3, a novel IMU pre-integration which incorporates IMU
intrinsic parameters. Based on ACI3, we fuse multiple IMU measurements by leveraging IMU-IMU
rigid body constraints with spatiotemporal and inertial intrinsic calibration. We have performed
MVIS observability analysis, proving that four standard unobservable directions corresponding to
global yaw and global translation remain, while the calibration parameters are observable under fully
excited motion. Moreover, we have also, for the first time, identified the commonly seen degenerate
motions that can cause IMU-IMU/gyroscope calibration parameters to become unobservable. We
show that the rotation calibration between IMU and gyroscopes is unobservable given one-axis
rotation, while the time offset between IMUs is observable given constant local angular and linear
velocity for one of the IMUs.
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Figure 15: Calibration results for one planar motion dataset collected with Intel Realsense T265 and four IMUs. The
translation of IMUb-IMUa0, IMUb-IMUa1, IMUb-IMUa2, the Dw of IMUb, IMUa0, IMUa1 and IMUa2 cannot converge under
planar motions, which verifies our observability analysis. Different colors represent different initial perturbations to
the IMU-IMU translations.
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Figure 16: Calibration results for one fully-exicted motion dataset collected with Intel Realsense T265 and four
IMUs. The translation of IMUb-IMUa0, IMUb-IMUa1, IMUb-IMUa2, the Dw of IMUb, IMUa0, IMUa1 and IMUa2 converge
nicely compared to planar motion case. Different colors represent different initial perturbations to the IMU-IMU
translations.
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Extensive simulations have been performed to evaluate the proposed system and verify the
degenerate motions identified for these calibration parameters. Moreover, a self-made sensor rig
that consists of multiple commonly-used IMUs and GS/RS cameras were used for data collection
and system evaluation. In particular, three sets of experiments were performed to fully evaluate the
calibration accuracy of the proposed MVIS against the state-of-art sensor calibration framework
Kalibr. A total of 25 datasets were collected with the VI-Rigs to provide detailed statistics for
calibration convergence and repeatability of the proposed MVIS and Kalibr.

In the future, vehicle dynamics (e.g., contact dynamics from legged robots [28], MAV dy-
namics [55]) can also be leveraged for system calibration. We will study how sensor configu-
ration/installation will affect these visual-inertial calibrations. We will also investigate calibrat-
ing MVIS under degenerate motions (e.g. on aerial or ground vehicles), and develop efficient
marginalization to enable the proposed batch optimization-based MVIS to perform online cali-
bration amenable for real-time performance.
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Appendix A: Degenerate Motion For Inertial Intrinsics

The degenerate motions for base IMU, auxiliary IMU and auxiliary Gyro are similar. Hence, for
simplicity, we save the notation for frame reference and explain the degenerate motion for base IMU
with RPNG model as an example. Note that some unobservable directions related to I

aR are slightly
different from our previous work [9] due to different linearization for rotation [see Eq. (80) and
(81)].

A.1: ww1 constant

If ww1 is constant, dw1 will be unobservable with unobservable directions as:

Nw1 =
[
01×9 (D̂−1

w e1)
⊤ww1 01×3 1 01×23 | 01×39 | 01×12 | 01×27 | 01×3

]⊤ (263)

A.2: ww2 constant

If ww2 is constant, dw2 and dw3 will be unobservable with unobservable directions as:

Nw2 =

[
01×9 (D̂−1

w e1)
⊤ww2 01×3 0 1 0 01×21 | 01×39 | 01×12 | 01×27 | 01×3

01×9 (D̂−1
w e2)

⊤ww2 01×3 0 0 1 01×21 | 01×39 | 01×12 | 01×27 | 01×3

]⊤
(264)

A.3: ww3 constant

If ww3 is constant, dw4, dw5 and dw6 are unobservable with unobservable directions as:

Nw3 =
[
03×9 (D̂−1

w )⊤ww3 03 03 I3 03×18 | 03×39 | 03×12 | 03×27 | 03
]⊤ (265)

A.4: aa1 constant

If aa1 is constant, da1, pitch and yaw of I
aR are unobservable with unobservable directions as:

Na1 =



012×1 012×1 012×1

D̂−1
a e1

aa1 D̂−1
a e2d̂a1

aa1 D̂−1
a e3d̂a1d̂a3

aa1
06×1 06×1 06×1

1 0 0

0 d̂a3 0

0 −d̂a2 0

0 d̂a5 −d̂a6d̂a3
0 −d̂a4 d̂a2d̂a6
0 0 d̂a4d̂a3 − d̂a2d̂a5

09×1 09×1 09×1

03×1 −e3 −(e1d̂a2 + e2d̂a3)
039×1 039×1 039×1

012×1 012×1 012×1

027×1 027×1 027×1

03×1 03×1 03×1


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A.5: aa2 constant

If aa2 is constant, da2, da3 and roll of I
aR are unobservable with unobservable directions as:

Na2 =



012×1 012×1 012×1

D̂−1
a e1

aa2 D̂−1
a e2

aa2 D̂−1
a e3d̂a3

aa2
06×1 06×1 06×1

0 0 0
1 0 0
0 1 0
0 0 0

0 0 d̂a6
0 0 −d̂a5

09×1 09×1 09×1

03×1 03×1 −e1
039×1 039×1 039×1

012×1 012×1 012×1

027×1 027×1 027×1

03×1 03×1 03×1



(266)

A.6: aa3 constant

If aa3 is constant, da4, da5 and da6 are unobservable with unobservable directions as:

Na3 =
[
03×12 (D̂−1

a )⊤aa3 03×9 I3 03×12 | 03×39 | 03×12 | 03×27 | 03
]⊤ (267)

A.7: Ia1 constant

If Ia1 is constant, tg1, tg2 and tg3 are unobservable with unobservable directions as:

Ng1 =
[
03×9 I3

Ia1 03 03×12 −I3 03 03 03 | 03×39 | 03×12 | 03×27 | 03
]⊤
(268)

A.8: Ia2 constant

If Ia2 is constant, tg4, tg5 and tg6 are unobservable with unobservable directions as:

Ng2 =
[
03×9 I3

Ia2 03 03×12 03 −I3 03 03 | 03×39 | 03×12 | 03×27 | 03
]⊤
(269)

A.9: Ia3 constant

If Ia3 is constant, tg7, tg8 and tg9 are unobservable with unobservable directions as:

Ng3 =
[
03×9 I3

Ia3 03 03×12 03 03 −I3 03 | 03×39 | 03×12 | 03×27 | 03
]⊤
(270)
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