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Abstract

In this paper, we study state estimation of multi-visual-inertial systems (MVIS) and develop sensor fusion algorithms to
optimally fuse an arbitrary number of asynchronous inertial measurement units (IMUs) or gyroscopes and global and/or
rolling shutter cameras. We are especially interested in the full calibration of the associated visual-inertial sensors,
including the IMU/camera intrinsics and the IMU-IMU/camera spatiotemporal extrinsics as well as the image readout time
of rolling-shutter cameras (if used). To this end, we develop a new analytic combined IMU integration with inertial
intrinsics—termed ACF—to pre-integrate IMU measurements, which is leveraged to fuse auxiliary IMUs and/or gyro-
scopes alongside a base IMU. We model the multi-inertial measurements to include all the necessary inertial intrinsic and
IMU-IMU spatiotemporal extrinsic parameters, while leveraging IMU-IMU rigid-body constraints to eliminate the ne-
cessity of auxiliary inertial poses and thus reducing computational complexity. By performing observability analysis of
MVIS, we prove that the standard four unobservable directions remain—no matter how many inertial sensors are used, and
also identify, for the first time, degenerate motions for IMU-IMU spatiotemporal extrinsics and auxiliary inertial intrinsics.
In addition to extensive simulations that validate our analysis and algorithms, we have built our own MVIS sensor rig and
collected over 25 real-world datasets to experimentally verify the proposed calibration against the state-of-the-art
calibration method Kalibr. We show that the proposed MVIS calibration is able to achieve competing accuracy with
improved convergence and repeatability, which is open sourced to better benefit the community.
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1. Introduction (MVIS)—which uses multiple IMUs and multiple cameras
for 6 DoF pose tracking and 3D mapping—have been
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Usenko etal., 2016). In particular, Leutenegger et al. (2015),
Usenko et al. (2016), and Fu et al. (2021) have shown that
stereo camera or multiple cameras can achieve better pose
accuracy or lower the uncertainties of IMU-Camera cali-
bration. Only a few works recently investigate multiple
inertial sensor fusion for VINS (Eckenhoff et al., 2019b;
Faizullin and Ferrer, 2023; Kim et al., 2017; Wu et al., 2023;
Zhang et al., 2020), showing that the system robustness and
pose accuracy can be improved by fusing additional IMUs.
For optimal fusion of multiple asynchronous visual and
inertial sensors for MVIS, it is crucial to provide accurate
full-parameter calibration for these sensors, which include
(1) IMU-IMU/camera rigid transformation, (ii) IMU-IMU/
camera time offset, (iii) time-varying IMU biases, (iv)
constant IMU intrinsics, including scale/skewness correc-
tion for gyroscope/accelerometer, g-sensitivity, and the
rotation between the gyroscope and accelerometer, (V)
camera projection/distortion model parameters, and (vi)
image readout time of rolling shutter (RS) cameras.

While there exists literature regarding to multi-camera
and multi-IMU navigation systems (Eckenhoff et al., 2021;
Fu et al., 2021; Furgale et al., 2013; Geneva et al., 2020;
Kim et al., 2017; Rehder et al., 2016; Zhi et al., 2022), most
of these works do not support full-parameter calibration. For
example, only synchronized multiple global shutter (GS)
cameras are supported in Fu et al. (2021) and Geneva et al.
(2020), which cannot handle measurements from multiple
asynchronous inertial sensors or RS cameras. Only rigid
transformations for multiple IMUs can be calibrated in the
work of Kim et al. (2017). Although the work (Zhi et al.,
2022) can handle the spatiotemporal calibration for asyn-
chronous cameras and IMUs, rolling shutter (RS) calibra-
tion and IMU/camera intrinsic calibration are missing. The
work (Eckenhoff et al., 2021) can calibrate multiple
asynchronous RS cameras and IMUs but the IMU intrinsic
parameters (including scale/skewness correction and
g-sensitivity) were not estimated. Although the work
(Furgale et al., 2013) and its extension (Rehder et al., 2016)
support the spatiotemporal calibration for multiple IMUs
and cameras with their intrinsics, they do not support hybrid
calibration of GS/RS cameras, nor the joint optimization of
IMU-IMU or IMU-Camera time offsets. To the best of our
knowledge, no work can perform joint optimization of all
these calibration parameters, which are critical for multi-
sensor fusion.

In this paper, we thus aim to perform full-parameter joint
calibration of MVIS, including IMU-IMU and IMU-
Camera spatiotemporal calibration, IMU/camera intrin-
sics, and RS readout time. Note that IMU intrinsics include
both time-varying biases and constant IMU intrinsics terms,
such as scale/skewness correction for gyroscope/
accelerometer, g-sensitivity, and the rotation between gy-
roscope and accelerometer. All the IMU intrinsics are jointly
estimated in the proposed MVIS. Joint calibration is often
necessary due to its removal of specialized IMU calibration
fixtures, e.g., rate tables, since the aiding camera sensor is
able to provide exteroceptive information concurrently.

Additionally, key parameters such as IMU scale and camera
focal lengths are sensitive to environmental humidity and
temperature, which can cause unmodeled errors if se-
quential data collections are used. Many works have shown
the benefits of concurrent estimation and calibration on
trajectory and parameter accuracy. For example, Rehder
et al. (2016) showed that estimating IMU intrinsics im-
proves IMU-Camera extrinsic calibration, Fu et al. (2021)
showed that joint calibration in multi-camera systems re-
duced parameter uncertainty. Li et al. (2014) and Huai et al.
(2022) gained improvements in system performance (in-
cluding reductions in reprojection errors) by performing
concurrent full-parameter estimation. Moreover, no ob-
servability analysis focusing on MVIS is available in the
literature. We specifically focus on a MVIS which contains
multiple IMUs (IMU-IMU) or additional gyroscopes (IMU-
Gyroscope), as the fusion of multiple low-cost noisy gy-
roscopes holds great potential to improve downstream
orientation estimation (Eckenhoff et al., 2021; Zhang et al.,
2020). In particular, the degenerate motion study of the
spatiotemporal calibration for IMU-IMU is missing from
the literature, which greatly limits our understanding of such
systems.

To fill this gap, we first leverage our previous work on
analytic combined IMU integration (Yang et al., 2020a) to
derive a new IMU integrator for IMU intrinsic calibration
(i.e., ACP). As compared to the conventional IMU pre-
integration (Forster et al., 2016; Lupton and Sukkarieh,
2012) and general pre-integration (Fourmy et al., 2021) with
only mean correction from bias terms, we support inertial
intrinsics calibration and have both the mean and covariance
corrections when linearization points change for biases and
constant IMU intrinsics. In addition, we also model cross
correlations between IMU navigation state and bias, as done
in Brossard et al. (2021) and Eckenhoffet al. (2019a), which
are missing from Forster et al. (2016) and Fourmy et al.
(2021). Additionally, ACI® analytically computes IMU
intrinsics Jacobians which have not been seen in the lit-
erature. Based on this, we design a novel algorithm to fuse
multiple IMU/gyroscope measurements by using the rigid
body constraints between these inertial sensors. A complete
MVIS algorithm is developed, which can truly jointly es-
timate all the calibration parameters (spatiotemporal pa-
rameters for IMU-IMU and IMU-Camera, IMU/camera
intrinsics, and readout time) within a batch nonlinear least
squares (NLS) optimization framework. Based on the lin-
earized system models, the observability analysis of MVIS
with full-calibration is performed. We show that all these
calibration parameters are observable given fully excited
motions, and also, for the first time, identify the degenerate
motions for IMU-IMU and IMU-Gyroscope spatiotemporal
calibration. By building our own MVIS sensor rig with
multiple IMUs and GS/RS cameras for data collection, we
validate the proposed system against the state-of-art Kalibr
(Furgale et al., 2013; Rehder et al., 2016).

In particular, the main contributions of this work are the
following:
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® We propose an optimization-based multi-visual-inertial
(IMU and/or gyroscope) sensor calibration algorithm,
which jointly estimates a// spatiotemporal (including RS
readout time) and intrinsic parameters for an arbitrary
number of visual and inertial sensors.

¢ Building upon our prior work (Yang et al., 2020a), we
develop a new analytic combined IMU integrator with
inertial intrinsics (i.e., ACI®), which corrects both mean
and covariance of pre-integrated IMU measurements
when IMU bias and intrinsic linearization changes. We
also propose an auxiliary IMU fusion algorithm that
allows for both the extrinsic and intrinsic calibration for
multiple IMU sensors.

® We perform comprehensive observability analysis for
the MVIS with full-parameter calibration, and, for the
first time, identify the degenerate motions related to
IMU-IMU calibration. We show that under one-axis
rotation motion, the rotation between IMU and gyro-
scope is unobservable along rotation axis. We also show
that under constant local angular and linear velocity, the
time offset between IMUs is observable, which counters
our intuitions.

¢ We conduct extensive simulations with three typical
motion profiles. The simulation results confirm that we
are able to recover all visual and inertial calibration
parameters with the proposed MVIS in the fully excited
motion case. Specifically, 25 datasets collected by our
self-made sensor rig are also used for evaluating the
proposed MVIS against state-of-art calibration methods,
and the results prove that the proposed approach ach-
ieves comparable accuracy and better repeatability. The
identified degenerate motions for the pertinent calibra-
tion parameters are also verified through both simulation
and real-world experiments.

The paper is organized as follows: after briefly reviewing
the related works in the next section, we present the pro-
posed MVIS estimation framework in Section 3. The visual-
inertial measurement constraints used by the system are
explained in Sections 4—7, while in Sections 8—9, we present
the observability analysis and identified degenerate mo-
tions. We validate our analysis and algorithms in Sections
10-11 and conclude the paper in Section 12.

2. Related work

While there exists rich literature in VINS (Huang, 2019), in the
following, we only review the works closely related to MVIS
and the calibration of MVIS, which can be categorized as (i)
multiple inertial sensors aided navigation systems, (ii) multiple
cameras aided inertial navigation systems, and (iii) multi-
camera and multi-IMU navigation systems.

2.1. Multi-inertial navigation

There are a few works using multiple inertial sensors to
improve the navigation system. Wu et al. (2023) proposed to

use triple IMUs with wheel encoders to improve dead
reckoning and showed that the drifting rates continue
dropping as the number of used IMU increases. Faizullin
and Ferrer (2023) proposed to use the best axes composition
(BAC) algorithm to select the best fitting data from multiple
inertial sensors to avoid systematic errors when fusing
multiple customer grade IMUs. They showed that the in-
ertial navigation system performances can be improved by
increasing the number of used inertial sensors. Kim et al.
(2017) fused multiple IMUs through reformulating pre-
integration (Forster et al., 2016) by transforming the aux-
iliary inertial readings into the base inertial frame. However,
they relied on the numerical computation of angular ac-
celerations to perform this transformation. They did not
estimate the IMU-IMU related calibration parameters,
either.

Zhang et al. (2020) proposed to convert the readings
from multiple IMUs into a single “virtual” synthetic IMU
measurement, which is expected to be less noisy. While
offering computational savings compared to other multi-
inertial fusion algorithms, it relies on having perfectly
known spatiotemporal calibration for these inertial sensors.
It is clear that the above mentioned works all assume the
high-accuracy IMU-IMU calibration is provided and they
leverage multiple IMUs but with only one camera for pose
estimation. Jadid et al. (2019) showed that the fusion of
three low-cost calibrated IMUs can be used to achieve
similar pose tracking performances as a single high-end
IMU in the application of tracking head mounted device
(HMD). They also proposed to use static IMU measure-
ments to calibrate accelerometer intrinsics and non-static
IMU measurements to calibrate the gyroscope intrinsics.
Lee et al. (2022) proposed an extrinsic calibration algorithm
for multiple IMUs when these IMUs are rigidly connected
and moving arbitrarily. Only measurements from these
IMUs are needed for the calibration. However, the time
offsets between these IMUs and the IMU intrinsic cali-
bration are all missing from this work.

Although all the above mentioned works have shown
that fusion of multiple IMUs to wheel-INS or VINS can
improve pose tracking accuracy, most of them rely entirely
or partially on high-accuracy prior calibration of these
IMUs: including IMU-IMU spatiotemporal calibration and
the inertial intrinsics of these IMUs. Instead, this paper aims
to solve the full-parameter calibration for multiple IMUs,
including intrinsics, extrinsics, and time offsets, especially
for the application of multiple inertial sensors in the VINS
domain.

2.2. Multi-camera aided inertial navigation

There have been quite a few works investigating fusing
observations from multiple cameras for visual-inertial
navigation. Processing all the measurements from mul-
tiple cameras will significantly slow down the system.
Hence, Kuo et al. (2020) proposed an information-based
keyframe selection algorithm for efficient multi-camera
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fusion. Zhang et al. (2022) proposed an efficient feature
selection and tracking algorithm to speed up the mea-
surement processing for multiple cameras. These two works
only fuse visual observations from multiple cameras but
without considering the sensor calibration. Fu et al. (2021)
proposed to use multiple synchronized cameras to improve
IMU-Camera calibration. They proved that the extrinsic co-
variance bound will be smaller when more cameras are used.
This indicates that the IMU-Camera calibration can converge
faster with more confidences. Our previous work, OpenVINS
(Geneva et al., 2020) supports synchronized multi-camera
aided VINS with extrinsic, intrinsic, and temporal cali-
bration between IMU and camera. However, rolling shutter
cameras are not supported by either of the above works.

In this paper, the proposed MVIS support the extrinsic
and intrinsic calibration for multiple asynchronous global
shutter or rolling shutter cameras. We provide quantitative
analysis for how the calibration estimates are improved
when 1, 2, or 3 cameras are used simultaneously. In ad-
dition, the proposed MVIS supports simultaneous calibra-
tion of global shutter and rolling shutter cameras with image
readout time.

2.3. Multi-camera and multi-IMU navigation

There are only a few works focusing on joint calibration for
multiple cameras and multiple IMUs. Zhi et al. (2022)
proposed MultiCal, which exploits continuous-time
curves to represent pose states and supports the spatial
and temporal calibration for multiple IMUs and cameras
with planar targets. However, rolling shutter camera cali-
bration and IMU/camera intrinsic calibration are not sup-
ported. Eckenhoff et al. (2021) proposed a filter-based
framework for fusing multiple IMUs and multiple cam-
eras by estimating each auxiliary IMU with full state
(containing orientation, position, velocity, and biases), and
enforced relative pose constraints between sensors at fixed
rates. It also showed robustness to inertial sensor failures.
This work does not take into account the inertial intrinsic
parameters and only includes the IMU-IMU and IMU-
Camera spatiotemporal calibration. Additionally, their
multi-IMU constraints required an additional 6 DoF pose
for each auxiliary IMU since each IMU is propagated in-
dependently forward. Rehder et al. (2016) extended the
continuous-time Kalibr framework (Furgale et al., 2013) to
calibrate the extrinsic and intrinsic parameters of auxiliary
inertial sensors by formulating the angular velocity and
linear accelerations as functions of the trajectory spline
derivatives. However, when performing IMU-Camera and
IMU-IMU calibration, the camera intrinsics and IMU-IMU
time offset are fixed instead of jointly optimized with other
parameters. It does not support visual-inertial rolling shutter
calibration. In addition, no theoretical consistency analysis
or 3 sigma plots for IMU intrinsic calibration are provided
for validation.

Unlike the above mentioned works, the proposed MVIS
supports multiple IMU/gyroscope calibrations with both

global shutter and rolling shutter cameras. All related pa-
rameters, including IMU/camera intrinsics, spatial and
temporal parameters between IMUs and cameras, can be
calibrated. In addition, we also, for the first time, provide
MVIS observability analysis, which shows that all these
calibration parameters are observable given fully excited
motions. We also investigate the degenerate motions that
might cause certain calibration parameter to fail, especially
for IMU-IMU and IMU-Gyroscope spatiotemporal
calibrations.

3. Multi-visual-inertial system

In this section, we first present the full IMU model (con-
taining scales, axis-misalignment, and g-sensitivity) and
camera model (containing camera intrinsics, lens distortion,
and RS readout time) in the MVIS. We then introduce the
state vector containing all the calibration parameters for an
arbitrary number of IMUs and cameras, followed by the
nonlinear least-squares (NLS) formulation.

3.1. IMU model

Since an IMU can read angular velocity and linear accel-
eration, it is assumed to consist of two distinguishable
frames (Yang et al., 2023b): gyroscope frame {w} and
accelerometer frame {a}. Similar to the IMU models in Li
et al. (2014), Schneider et al. (2019), and Yang et al.
(2023b), the raw angular velocity “®,, from the gyro-
scope and linear acceleration “a,, from accelerometer are
written as:

Y0, =T, 'R'o+T,'a+b, +n, ()
“a, =T,‘R'a+b, +n, #))

where T,, denotes the scale and axis misalignment for {w},
while T, represents the scale and axis misalignment for {a}.
T, represents the g-sensitivity. /R and R denote the ro-
tation from base IMU {/} to the gyroscope and acceleration
frame, respectively. We use 6 parameters (indexed column-
wise upper/lower triangular matrix) to describe the T,, and
T, while T, remains a 3 x 3 full matrix. b, and b, are the
gyroscope and accelerometer biases, which are both
modeled as random walks. ng and n, are the zero-mean
Gaussian noises contaminating the measurements. The local
acceleration ‘a is defined as:

'a="'a,~LR 3)

where “g=[00 — 9.81]"; ‘a, refer to the local acceleration
of the rigid sensor body, which reflects the motion of the
Sensor.

The corrected angular velocity ‘@ and linear acceleration
‘a are thus defined as:

‘'@ =/RD,("®, — b, —n, — T, a) )
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'a = 'RD,(“a,, — b, —n,) (%)
where D,, =T, land D, = T;l. Instead of T,, and T,, D,,
and D, are estimated, since they can be used directly for
computing the corrected angular velocity ‘@ and linear
acceleration ‘a. In the following, we refer D,, as the gy-
roscope correction and D, as accelerometer correction.

To simplify the transformation among these three frames:
{I}, {a}, and {w}, the IMU frame {/} is chosen to coincide
with either {w} or {a} (see Figure 1).

In practice, we consider two models in this paper: RPNG
model and kalibr model'.

® RPNG model: IMU frame {/} coincides with {w} and
'R=1.T, R, D,, and D, are estimated. D« is in
upper triangular matrix form as:

dx, dx, dx,
Dx = 0 d*3 d*5 (6)
0 0 dx

6

¢ Kalibr model: IMU frame {/} coincides with {a} and
'R =1;. T, 'R, D, and D, are estimated. Dy is in

lower triangular matrix form as:

d*l 0 0
e = d*2 d*4 0 @)
d*3 d*5 d*6

where the subscript * denotes either w or a.

Since the translation between the gyroscope and the
accelerometer “p,, has been safely ignored in most VINS
algorithms (Li et al., 2014; Schneider et al., 2019; Schubert
etal., 2018; Yang et al., 2020b) (e.g., they assume “p,, = 0),
in the remaining of our analysis the RPNG model will be
used to be compatible with existing literatures. For most
MEMS IMUs, this translation should be sufficiently small
and in the case that they are not, the Kalibr model is
sufficient to ensure proper modeling. The Kalibr model is
used to compare with Kalibr (Furgale et al., 2013) and
benefits from assuming the IMU frame to be aligned with
the accelerometer.

3.2. Camera model

Cameras follow a pinhole model as in Eckenhoff et al.
(2021) and Geneva et al. (2020). A 3D point feature,
pr, is captured by a camera with visual measurement
function:

zc = [u v]T + ncéhd(zn,xcm) +n¢ ®)

where {u, v} is the distorted image pixel coordinate; z, =
[t V] T represents the normalized image pixel; nc denotes
the measurement noise; h,(-) maps the normalized image
pixel onto the image plane based on the lens distortion
models and camera intrinsic parameters Xc,

( Multi-Visual-Inertial Sensor Rig
4 i O ™\ S
_{I} o __-—"'_‘- l’f
—{w}| 2 % gl
— I 4701 (980 (N §
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s N 7 N Sea e
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Figure 1. The multi-visual-inertial system contains: base IMU
(IMUDb) composed of an accelerometer {a} and a gyroscope
{w}, auxiliary IMUs (IMUa) {/,}, auxiliary gyroscopes (GYRO)
{L;}, and cameras (CAM) {C}. Base IMU frame {/} is determined
to coincide with gyroscope frame {w} or accelerometer frame
{a}, {4,,} and {4,} represent the gyroscope and accelerometer
frames of the auxiliary IMU. While an IMU can read both angular
velocities and linear acceleration, a gyroscope (GYRO) only
reads angular velocities. The system observes environmental
landmarks p, through its cameras. The system can contain arbitrary
amounts of sensors.

xc, = fo cu e ki ko pr pa] ' ©)

Specifically, x¢, can represent a pinhole model ({f,, f,,}
denotes focal length and {c,, c¢,} the center point) with
radial-tangential ~ (radtan) or  equivalent-distant
(equidist) distortion.

For radtan distortion model, k; and k, represent the
radial distortion coefficients while p, and p, are tangential
distortion coefficients. We refer the reader to Geneva et al.
(2020) and OpenCV Developers Team (2021) for details on
the equidist distortion model. Note that the radtan
model is used in the following derivations and analysis.
With xc,,, hy(-) with the radtan model is given by:

u -fu 0 Ug Cy
= + (10)
v 10 £l |va ¢y
{ud} B -du,,+2p1u,,v,, +p2(r2+2ui) (11
val | dv, + pi (r2 + 2\/5) ~+ 2pou, v,

where 2 = u? 42, d = 1 + k;* + kor®;

GS cameras expose all pixels at a single time instance,
while RS cameras expose each row sequentially. As shown
by Guo et al. (2014), it may lead to large estimation errors if
RS effects are not taken into account. Additionally, the
camera and IMU measurement timestamps can be incorrect
due to processing delays, or different clock references. To
address this, we model both the time offset and camera
readout time to ensure all measurements are processed in a
common clock frame of reference and at the correct cor-
responding poses. Specifically, ¢, denotes the time offset
between IMU and camera timeline while ¢, denotes the
constant RS readout time for the whole image. If ¢ denotes
the time when the pixel is captured, the RS measurement
function for a normalized image pixel z, is given by:
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1
Zy = hp(cpf)éc_zf

(12)

fo 1
yr

CP/‘ =h, ( gt)R» GPI(I)»JCR’ Cpl’ pr) (13)

c
= I RIG(I)R( pr_Gpl(t) ) +CP1

where {ICR, Cp,} represents the rigid transformation be-
tween the IMU and camera frame. As usual, {,G([)R, P}
is the IMU global pose corresponding to the camera
measurement time .

If the image pixel zc, equation (8), is captured in the m-th
row (out of total M rows), and ¢; is the IMU state time
corresponding to the captured image time - when the first
row of the image is collected, the relationship between #;, 7¢,
t;, and ¢, are expressed as:

o=t +1 (14)
m
=t (15)

If the readout time ¢, = 0, then the camera is actually a GS
camera and all rows are a function of the same pose.

3.3. State vector

The proposed MVIS can support any number of IMUs and
cameras. For simplicity of presentation, we only consider
one representative sensor (one base IMU, one auxiliary
IMU, one auxiliary gyroscope, and one RS camera) of each
type in the state vector. Both simulation and real world
experiments use multiple auxiliary IMUs/gyroscopes and
cameras.

The state vector of MVIS contains the base IMU states
X7, the auxiliary IMU states X, and the auxiliary gyro-
scope states X', from time stamp ¢, to #;. Additionally, it also
contains all the constant sensor intrinsics &X', spatiotem-
poral extrinsics Xz, and environmental features X 5.

x=[x7 Ay AL xn XL X[ (16)
X, = [xIT XII x,: ] T 17
X, = x, T T i 18
L = | XL, X7, X7, (18)
X, = {x T ox, T - x T}T (19)
Iy Ig Ig, Loy
where X'z contains 3D feature positions pri G=1,..1D:
GoT.. Gt |
Xr = [ Py pf/} (20)

The sub-states x;, X;,, and x;, denote the base IMU state,
auxiliary IMU state, and auxiliary gyroscope state, re-
spectively. They contain the following:

.
xi =[x, [ %] 2 [907 %) v ] b @D

G, T T Al G, T T T T 22
X, = { v, XA,,] ={ Vi, | by, bAa] (22)
x;, = bg, (23)

where x;, representing the time varying IMU state,
contains IMU navigation state X,,,, and bias state x,; ,GH

(IG 0) is 3D angle-axis vector corresponding to the rotation
%R (,G/R) from the base (auxiliary) IMU frame to global
frame {G}. Note that 70 = log( ¥R) with log(-) defined
as the log of SO(3) (Barfoot, 2017). Gpl (Gpln) and %,
(%v;,) represent the global position and velocity of base
(auxiliary) IMU in {G}. b, and b, denote the gyroscope
and accelerometer bias for base IMU, respectively. by,
and b,, denote the gyroscope and accelerometer bias for
auxiliary IMU, respectively. bg, denotes the gyroscope
bias for auxiliary gyroscope. We did not keep a full
navigation state for auxiliary IMU/gyroscope since the
poses can be recovered by the rigid body transform from
the base IMU. Note that IMU state x; is created based on
IMU frame corresponding to the camera image time. All
the IMU readings between two image timestamps will be
used for state estimation.

X, contains constant base IMU intrinsics Xx;,, constant
auxiliary IMU intrinsics Xg4,,, constant auxiliary gyroscope
intrinsics Xg,, and camera intrinsics X, :

S S N % Y
.
Xin = [xw x| x] {,eT] 25)
T T I T T
X4, = [XA, X X4, 4,0 } (26)
Xg, = Xg, 27

where X,, (X4,), X, (X4,) contains all the 6 column-wise
parameters from gyroscope correction D,, and accelerom-
eter correction D,, for base (auxiliary) IMU, respectively. X7,
(x4,) contains all the 9 parameters for g-sensitivity T, and
T4, from base (auxiliary) IMU, respectively. o (f;ﬂa)
denotes the rotation from the accelerometer frame to the
base (auxiliary) IMU frame. x¢, denotes the 6 column-wise
parameters from gyroscope correction D,, for auxiliary
gyroscope.

X, contains the spatiotemporal calibrations for base
IMU to auxiliary IMU x,,, base IMU to auxiliary gyroscope
X/, and base IMU to camera x;.:

T T
=[x 5D x]

(28)

x,=[107 "p] 1,]" (29)
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.
X, = [ Lo tdg} (30)

xe=[c07 Bl o]

G

Note that time offset between auxiliary IMU and base
IMU is defined as: ¢4, = t, — t;, where ¢, and ¢, represent the
auxiliary and base IMU measurement time, respectively.
The IMU-Gyroscope time offset 7;, and IMU-Camera time
offset #,; are defined in a similar way as #,,. ¢, denotes the
whole image reading out time for the RS camera. Note that
all the calibration parameters are summarized in Table 1.

3.4. NLS formulation

Given measurements zg from a sensor S, with additive white

Gaussian noise ng, we have:
Zs = hs(x) -+ ng, ng NN(O: RS) (32)

where hg(-) denotes the nonlinear observation function.
Then, we can formulate the NLS problem with state x as:

miny ZHZS — hg(x)

2
(33)

Ry

An initial guess %© is needed to start the optimization. After

computing the incremental state correction Jx, we can refine

the state estimates by X~ = x© @mox, where & represents
the state manifold update (Barfoot, 2017). In summary, we
have the following NLS equivalent to maximum likelihood
estimation (MLE) under some common assumptions:

mxinZ(CI +) CL+> C,+ ) Cc

where C;, C;,, C;,, and Cc denotes the cost for base IMU,
auxiliary IMUs, auxiliary gyroscopes, and cameras, respec-
tively, and will be built explicitly later. The NLS from equation
(34) can be solved through various nonlinear least squares
solvers (e.g., IPOPT (Wachter and Biegler, 2006), g2o
(Kiimmerle et al., 2011), GTSAM (Dellaert, 2012), and
Google Ceres (Agarwal et al., 2023)) and yields the optimal
IMU states, point features, and calibration parameters [see
eq. (16)]. In this paper, we choose the well-known GTSAM as
our NLS solver for evaluations since it achieves comparable
accuracy to other solvers (Juri¢ et al., 2021), but this should not
stop interested readers from using other solvers.

(34)

4. ACI’: Pre-integration with intrinsics

In this section, we extend our analytic combined IMU in-
tegration (ACI?) (Yang et al., 2020a) to incorporate constant
IMU intrinsics into pre-integration, and propose an efficient
IMU integrator that can be leveraged for constant IMU
intrinsic calibration.

The IMU dynamic model is given by Sola (2017) and
Trawny and Roumeliotis (2005):

Table 1. The full-calibration parameters in the proposed MVIS.

Sensor Extrinsics Temporal Intrinsics Qty
Base IMU — — Xin 1
Aux IMU 'R, p, 14, X4, =
Aux Gyro ng lq, XGiy 1
Camera IR, 'pc Loy By Xc, >1
GR G _G
IRZIGR'V‘UJ’ pP,/="Vvr
%, = ‘R'a+, (35)

Iy, Iy,
bg = Ny, ba =Ny,

where “g is defined in equation (3); n,, and n,, are
the white Gaussian noises driving the gyroscope and ac-

celerometer biases. ‘o) = (o, 0, o] and
0 —w;
l'ow|=|w. 0 — oy | represents a skew symmetric

-, 0
matrix (Trawny and Roumeliotis, 2005). We also denote X
as estimate of x, while X as error states between x and X,
i.e., X = xBX. The IMU pose is represented on SO(3) x R?
with error states:

R = Rexp(6) (36)

P=pP+p 37N

where exp(d0) =I5 + |50] for small angle 50 € R?; exp(-)
denotes the exponential operation of SO (3) (Barfoot, 2017).

4.1. Pre-integration terms

Between two sampling times # and #;, we integrate the IMU
dynamic model as follows:

,(;‘R =7R-AR (38)
1

;= Py Vi Ot RAp + 2 “got’ (39

Gv,}. = th +gRAv+Gg51 (40)

b, = b,, + Ab, 41)

b, = b,, + Ab, (42)

where 0t = t; — t;, while AR, Ap, Av, Ab,, and Ab,, which are
the IMU pre-integration terms from # to #, are described by:

i
AR 2 exp(/ "(Ddr) = hg (Xlksx]i) (43)
I
t/ N
17 173
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i
Av £ / FRladr = h,(x;, x;) (45)

/3

i
Ab, £ / n,.dr = b, — b, (46)

3

]
Ab, £ / n,,dr = b, —b,, 47)

1

where we have defined:

he(x;.x;) 2 /RT/R (48)

G 1
h,(x;.x;) =, RT <Gp1j—Gp1k—GV1k5t - EGg512> (49)

by (3. %;) £ 7R (v v, ~Cgor)

(50)
In the following, the proposed ACI® recursively computes
the mean and covariance of these pre-integrated terms
(i.e., AR, Ap, Av, Ab,, and Ab,) with intrinsics X;;,.

4.2. Recursive formulation

Assuming there are j — k + 1 IMU readings between the
timestamps k and j, there exits an integer i such that k <k +
i<k+i+1<j. AR, Ap,, Av,, Abg; and Ab,; denote the
integration components using all IMU readings from time #;

tO tk+[:
lieti
AR; = exp(/ "wdr) SH
/3
li s
Ap, = / / ¥Rl adrds (52)
173 .
levi
Av; = / FRPadr (53)
I
Abgi = bgku‘ - bgk (54)
Abg; = by, — by, (55)

With that, we compute the pre-integration in the following
recursive form:

AR = AR; - R; 11y (56)
Ap; ., = Ap; + Av;ét; + AR; - p, 1, 57
Aviyy = Av; + AR, - v; i1 (58)
Abgi 1 = Abg; + by; 14y (59)
Abyip1 = Abg + b iy (60)

where the increments are defined as:

Al letit1 /
+i _
R 207 R= exp( / ‘wdr 61)
Ui
N ltit1 s / I
A iRl
| U —/ / "R adrds (62)
lvi i
N ttit y ;
Viitl =/ 1f+‘RtadT (63)
liti
A livig1
bgi,i+l =/ nwgdr (64)
Liyi
N i1
bai,H—l =/ nwad‘[ (65)
leti

By applying equations (56)—(60) to all the IMU readings
from #; to #;, we can compute both the mean and covariance
of the IMU pre-integration terms (i.e., AR, Ap, Av, Ab,, and
Ab,), as shown in the following sections.

4.3. Mean prediction

To simplify the ensuring derivations, we rewrite the IMU
readings w;.,; and a;.; as:

Ok = Opyi + O (66)
Ay = Apys + Ay (67)

where @y; and a;,; are the error terms that contain IMU
noises as defined in Appendix A. With bias terms defined in
equations (54) and (55), @ ; and a;; are computed as [see
Egs. (4) and (5)]:

&)k+i = {Vﬁﬁw(wwmkﬂ- - Ai;gi - ng - Tgak+i) (68)
§k+i:£§ﬁa (aam](“ - Ai;ai - Bak) (69)

Assuming that @;; and a;; are constant during the IMU
sampling interval [f;;, t;+i+1], We have:

~

R; 11 = exp(@y0t;) (70)
htit1 s PPN
= — k+i o
Pi it —/ / 1,+ Rdrds - a,;
/3] Ui (71)
A - -~
=20 Ay
it P
~ A ~
Vi, it —/ 1 "Rdr - ag,
fesi (72)
Am 2
=50 A
boi i1 = 03x1, bai i1 = 034 (73)
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where E; and E, are defined below. AR. = AR, exp(JAD;) (90)
lktit Lo -~ ~

g = / " Rdz (74) Ap, = AP, + A, 1)
lkti
. AVI' == Ai/\l + A"V’l (92)
ke+i+1 s
— L
=, = ""Rdrds (75) ~ -
’ / / N Aby, = Ab,, + Ab,, 93)
We thus recursively compute the IMU pre-integration mean: R ~
Abai = Abai + Abai (94)

AR, = AR;-R; (76)
Ap,,, = Ap, + AV,dt; + AR,; - Piii (77
AV = AV, + AR; -9, 11, (78)
Abg, = Abg + by ;. (79)
ABaiﬂ = ABai + Bui, it+1 (80)

4.4. Covariance prediction

To compute the covariance of the pre-integration mea-
surements, we need to obtain the state transition matrix and
noise Jacobians of the recursive formulation by linearizing
the three pre-integration terms [see Egs. (56)—(58)]:

~

Ry = Ri,i+1Ri,i+l (81)
=Ry i1 exp(d (0,101 @psi0t,) (82)
Piis1 = ﬁi,m + Py is1 (83)
=P — Balpyi + Eodyy (34)
Viigl = Vi1 + Vit (85)
=Vt — B30y + E185 (86)

where 5[, i1 = @0t and J,.( 5,-, 1) 23, (@0t denotes
the right Jacobian of SO(3) (Chirikjian, 2011). The inte-
grated components 5 and E, are defined as:

I

Uit
3 & / §f+iRl5k+iJJ,~((7)k+i5r)5r dr (87)
leyi

[Il

it
/ / R A (@4.07) 0T dids (88)
evi

Ui
Note that E;, i = {1...4} can be evaluated analytically with
detailed derivations in Yang et al. (2020b; 2023b) or nu-
merically using Runge—Kutta fourth-order (RK4) method.
The IMU pre-integration error states are given by:

~ ~ T
oA0] AR AV Ab, Aby|  (39)

with these errors states defined from equations (51)—(55):

Given that, the linearized IMU pre-integration model becomes:

Z,, = (I)1+1 i Z[ + (I)bxb/ + (I)mxm + G; Mgy (95)

where @, ;, ®p, D;, and G; are given in Appendix B. Finally,
the measurement covariance Q; follows the recursive form:

Q/,-+l = (I)i+1,iQ/,»‘I),L,,- + GiQdeT (96)

where Q, denotes the discretized noises of (ng, n,, n,,,, and
n,,,) from IMU readings. Through recursive evaluation of
the above equation, we can recover the pre-integrated IMU
measurement covariance between #, and ¢,

5. Base inertial costs

Since constant IMU intrinsics and biases are needed for
IMU integration, AR, Ap, and Av are also functions of IMU
biases x;, and constant IMU intrinsics X;,. In order to avoid
re-integration and re-linearization in iterative solvers when
the IMU intrinsics and bias estimates are refined, the IMU
pre-integration needs to fix the linearization points not only
for IMU biases xj, as in Forster et al. (2016), but for constant
IMU intrinsics Xx;,,.

To this end, we model the pre-integrated IMU mea-
surements between time # and ¢ as z; ~ N (z;, Q;):

log(AR) log(AR(Xp,, X4, 0y))
o Ap o AP (kas Xin, np)
= Av a AV(ka, Xins nv) (97)
Ax, n,

where the accumulated noises of IMU measurements are
denoted with n; = [nj n' n n, 71" and n; ~N(0,Q;)
from Section 4.4. We llnearlze the above measurements at

the current state estimate X as:

Y
AR = ARexp ( = + ffim + ng) (98)
6 8X,’,,
_ OAp.  OAp.
Ap = A + ~prk 00bs  +n, (99)
R, oK,
OAV.  OAV
Av = AV + - Vx,,k aNVim +n, (100)

Appendix C contains details of the Jacobian computations.
We now wish to fix the linearization points for the bias
and IMU intrinsics states with their initial guesses to avoid
costly re-integration during iterative solving. If we use x©
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denote the initial estimates while X’ denote the corre-
sponding initial error states, then we have:

~

x=x+x=x" +x© (101)

= 30 =3 -3 4 R2AX + % (102)

The IMU measurements can be linearized with the initial

(0)

estimates X' as:

~ A 0A
AR — AR exp a‘i O30 P800 0, (103)
5 GX,-,,
= he(x;.x;)
~(0) 8Af)~(0) 6Ap
Ap = A — 104
p p + 6321),‘ Xb/( + aim m + n[? ( )
=h, (ka, le)
OAV EiAV
_ A0 <(0)
AV - AV + aTbkxbk 6im m + n, (105)
=h, (Xlk’ Xff)

By applying equation (102) to equations (103)—(105),

We define 8., peor and v, as the orientation, position
and velocity correction terms due to the linearization point
changes of IMU biases x;, and constant IMU intrinsics X;,:

00AO 000
0CUI‘V é fAA fAAin
5, Ot g % (106)
A OAp 6Ap
o = —AX — AX, 1
Peorr = aihk Xby a~m Xi (07)
A OAV 8AV
corr = .~ A ~ A in
\Z %, Xp, 8 % X; (108)

Finally, the base IMU pre-integration measurements are
formulated in equation (109).The new IMU measurement

. .
noise n; is computed as:

ny
n 360, 0 n, | a
n;_ P _ | Irteor) 3x12 ? | 2Hyn;  (110)
n, 012x3 I n,
n, H,/ L

with covariance n; ~A’(0,Q;) and Q, = H,QH . Fi-
nally, the corresponding base IMU pre-integration cost is:

2

the pre-integrated IMU measurement with initial biases and Cr 21z, 8y (x;, X; X)) (111)
e . . . . . - =] s Ain
initial IMU intrinsic estimates can be rewritten as: ! e Q;
i O5A0_ SN0 1
log (hR (xlk, X1/.)exp <— 87ka — aTxm - 0corr> €Xp HZ))
by in
tog (AR©)) oum) OAp.  OAp.
AP . h, X XU A= Xpp — Az Xin — Peorr —Mp
50 = aka a Xin (109)
0o OAV OAV _
hv(x,k,m/.)— Exhk — gxin — Veorr — Iy,
V/ k mn
ZI xb/-th/(fnb

00N, . _ 00D
“exXp TR, (AXp, +Xp,) — i
k m

(AX,,, + in) - nH)

~ OAp
Ap” = h, (x;,x;) — P — (A, +X5,)

%,
8Ap
A mn m
R, — (AX, + X)) —
N OAV , . -
AV =h, (x;,%;) — 2o (AR, + X5,
6xbk
OAV
V(Axm + in) —n,

6x,,,

h; (Xlk,xlj, Xm) En)

As compared to other IMU pre-integration (Forster et al.,
2016; Fourmy et al., 2021; Lupton and Sukkarieh, 2012) with
only mean correction from bias terms, we support IMU in-
trinsics calibration and have both the mean correction [see Eqs.
(106)~(108)] and covariance correction [see Eq. (110)] when
linearization points change for time-varying biases and con-
stant IMU intrinsics. In addition, the cross correlations be-
tween IMU navigation state and bias are modeled in Q/,, which
are missing from (Forster et al., 2016; Fourmy et al., 2021).

6. Auxiliary inertial costs

Leveraging the base IMU pre-integration measurements
[see Eq. (109)], we now show how to derive the costs for the
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auxiliary IMU and gyroscope by using the rigid body
constraints between the base and auxiliary IMUs.

6.1. Auxiliary IMU cost

As the auxiliary IMUs are considered to be temporally
asynchronous with the base IMU, we employ pose inter-
polation to associate the base IMU state with the auxiliary
IMU state. The rigid body constraint between the auxiliary
and base IMU with interpolation terms is given by:

IGHR GPIM A [GWR Gplm LR Ip[” (1 12)
053 1 013 1 Ops 1

where {IG,-,,R’ Sp 1, } is the interpolated pose and represented
in SO(3) xR space. It can be computed with constant
linear velocity “v, and constant angular velocity ‘@
assumption:

R py, _
01><3 1

The auxiliary IMU pose {;'R,“p, } can be found with the
base IMU pose {’R,p,} as:

R “p, {exp(lwtta) letda}
01><3 1 0]X3 1

IR = 9Rexp (‘ot,); R (113)

“p, = IRVt +p,+ Rexp(’ wtda)[pja (114)
Note that ‘@ denotes the angular velocity from the base
IMU. Since ‘@ is not in the state vector, we need to use the
current best estimate of the ‘@.

There is no need to keep auxiliary IMU pose in the state
vector, because the auxiliary IMU pose can be expressed by
the base IMU state x; and extrinsics X;,. The auxiliary IMU
state, equation (22), only contains the auxiliary IMU ve-
locity and biases. We need to reformulate the pre-integration
equations (48)—(50) for the auxiliary IMU cost with the
equations (113) and (114) rigid body constraints. Following
equation (109), with some abuse of the notations for the

auxiliary IMU pre-integrated measurements z’,a and noises
n}a, we can define auxiliary IMU residual as equation (115).

We have defined hg(-),
IMU:

h,(-), and h,(-) for the auxiliary

T
he(-) 27 R 7R
A (GR I Y6 I 1
2 (jRexp ("ot,)R) Rexp (Yor,), R
= hy (Xlk, Xy XIA)
T 1
h,(-) éfakR <Gp1“j—Gplak—GV1uk5t—§ Ggétz)
éhp(xlk,xli’xlak’xlli)

T
< GV]H/_*GV[H,{ *Ggét)

h, (Xlk: .S XI,,/., XIA)

[I>

Following equations (106)—(108), the linearization cor-

rection terms of orientation @,,,, position p, , and ve-
locity vy, for the auxiliary IMU are given by:

0., = ‘Zfs’jA 1 a;A”A %, (116)

L2 (%IZ ARy, + Séﬂ ARy, (117)

Vidpor = ngAj’ AXA,,A §~A ‘: AXy, (118)

d

Finally, the corresponding auxiliary IMU cost is given by:

/ (119)
la

2
Co2 7, Bhi(x)|

6.2. Auxiliary gyroscope cost

Similarly, the auxiliary gyroscope cost can be derived as the
integration of angular velocity and gyroscope biases. The
gyroscope state is defined as gyroscope biases, the intrinsics
Xg, and the extrinsics x;,. The rotation constraint when
considering a time offset is written as:

* (Af(::)) h @f( _ 6Ap~
w0 0B, o T a, e P .
+ hy(-) ;ﬂx/"% — %ﬁ 4 — Vi, — M,

xAb,»_xAbk_nb

hy(x) EE\n’,H
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R=/Rexp(o1,);R (120)

Reusing the notation hg(-), see equation (48), we get the
gyroscope rotation function as:
AGR TG
he( ) :ngR Jg,R
T I
2 (7Rexp(“on,) | R) Rexp (Tor,)R
é hR (Xl/;s x],'y X[g)

where we still use the current best estimate for the ‘@. The
pre-integrated auxiliary gyroscope measurements and
noises are defined in equation (121). The linearization
correction term is defined as:

where R and ¢R denote the orientation of the auxiliary
%k Uht1

IMU which can be computed from base IMU orientation
with IMU-IMU extrinsics.

* Forby,, the accelerometer bias is initialized to 03x;.

7. Visual costs

We build the complete camera measurement function h(+)
by incorporating the distortion function h,(-) [see Eq. (8)],
the projection function h,(-) [see Eq. (12)] and the trans-
formation function h,(-) [see Eq. (13)] (Eckenhoff et al.,
2021; Geneva et al., 2020):

O00A0 - 00N _ ,
{log <Aﬁ(0>) } _ log (hR( * Jexp <a~ngngk - GTG,XG - 0Gmrr> €xXp E“a)) (121)
05,
v b(;g/_ — ngk — g
“ h(,(x)EEn}g
O00AO | ~ O0AO . . =h 126
Gy = o Abg, + o AR, (122) % ~he(®)+ne (126)
abG k 6XG,n
. .. * . = hy(z,,xc,) + nc (127)
Finally, the auxiliary gyroscope cost is given by:
2 :h(h (C ),x.)+n~ 128
C,2|z, Elha(x)’ , (123) a\( [ Pr)>¥Xa ) e (128)
Ig
= hy(h, (b (GR, “pc, “p;)). Xc,) + e (129)

6.3. Auxiliary inertial sensor initialization

An initial linearization point of the auxiliary inertial states is
required to perform optimization. This can be done by
leveraging the initial linearization point of the base IMU.
Specifically, we initialize the auxiliary IMU state x;,, which
contains the velocity “v;, and biases (b,, and by,) of the
auxiliary IMU, as follows:

® The initial velocity of the auxiliary IMU is computed
based on the rigid body constraints:

I
v, ="vi+/R| | R"0|'p, (124)

* For BAE](’ we integrate the angular velocity measurements
with zero bias for auxiliary IMU to get AR,. Then the
following linear system can be solved:

00AO  ~

P98 B, =1lo (ART GRT G R) 125
6b4gk Agk g a Iak Ial\—l ( )

We need to linearize the camera model for update, which is
given by:

iczHci+nC (130)

where Z¢ 2z¢ — he(X) and He 207 /0X. Using the chain
rule, we get the following Jacobian matrix:

N e N S
CTlex, 0%, 0xg, OXf
N N 4 (13D
H by H b, dac by
Pox,  Mox, X, ok

where Hp, = (0z¢/0z,). (0Z,/ ac;sf). We refer the reader to
the technical report for how to compute 6‘Cf)f /0%,
6Cf)f/6ilc, 6C§f/6’if-, and Hp, (Yang et al., 2023a). Hence,
the visual cost can be formulated:

2

Cc2|lzc — he(x) (132)

Q!

Pose interpolation, which has been verified for accurate
temporal calibration (Eckenhoff et al., 2021; Guo et al.,
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2014; Lee et al., 2020, 2021), is leveraged to model the time
offset and RS calibration in this work. Note that the pose
interpolation follows manifold in SO(3) xR?® space. For
example, if the feature measurement is in the m-th row with
total M rows in an image, we can find two bounding poses £
and k£ + 1 based on the measurement time ¢. The corre-
sponding time ¢ is between two IMU poses, #;, <t <#;.;. We
can then find the virtual IMU pose {IG(I)R, “p 1)} between
poses at k and k + 1:

m
A= (t, —|—Mt,. - t,()/(tkﬂ — ) (133)
9 R = 9Rexp (,1 1og(gRT gﬂR)) (134)
Py = (1=2)°p, +2°py., (135)

8. Observability analysis

Observability analysis plays an important role in state
estimation for VINS (Huang, 2012; Martinelli, 2013).
This analysis allows for determining the minimum
measurements needed to determine the state and identify
degenerate motions which may degrade system perfor-
mance by introducing additional unobservable direc-
tions for certain parameters (Lee et al., 2020; Wu et al.,
2017; Yang et al., 2019, 2020b). As MVIS continues to
gain popularity, the observability analysis for such a
system with full calibration parameters, especially IMU-
IMU spatiotemporal calibration, is needed to better
understand the fundamental properties of the underlying
system.

8.1. Reduced state vector

Although the proposed MVIS supports arbitrary
number of auxiliary inertial sensors and cameras, for
simplicity and without loss of generality, we use a
typical system consisting of only one base IMU, one
auxiliary IMU, one auxiliary gyroscope, and one RS
camera as unique sensors for the following observability
analysis (Hesch et al., 2014; Yang et al., 2023b; Yang
and Huang, 2019).

To simplify the ensuing derivation, we re-order the
state vector and assume that the base IMU, auxiliary
inertial sensors are all kept as full states (i.e., including
the full auxiliary inertial state). All the states will be
propagated forward with time, while the rigid body
constraints and visual measurements will be used to
update these states. Specifically, the state vector includes

all the necessary parameters for the observability analysis
as:

.
[ eT T T T GnT

X = |:XB Xy X Xeaw Py } (136)
AT T oT T oT oT oT «T GuT] '
= [x1 X X, Xy, X, Xg, Xge X, Py } (137)

Note that the auxiliary IMU and gyroscope states are:

.
x,= [ 707 °p] v bl b]] (138)

-
G
x,=[g07 by ] (139)
After propagation, the visual measurements and rigid body
constraints between inertial sensors are used to update the

states with:
(140)

where zc denotes the visual cost [see Eq. (126)]. For
simplicity, z, and z represent the rigid body pose con-
straints between auxiliary and base inertial sensors:

_ |log(ZRT /R, R) a1
Zi= 6. @ _GR! (141)
P,— P/ RP,

26 = 1og(gRT 9R ;p) (142)
8.2. Linearized observability analysis
The overall state transition matrix can be written as:
@ = Diag{®@3, D, Pg, Pyiip, Pr} (143)

The detailed derivations for @z, ® 4, @, P i, and @ can
be found in Appendix D. The corresponding linearization
Jacobians for equation (140) are:

o
X
o ;A Hez 0 0 Hee Her
~=|—| =|Hsz Hy 0 Hye 0
S Hp 0 Hoe Hoe 0
0Zg
L ox |
(144)

where H,y denotes the Jacobians of measurement Z
regarding to state parameter X. These Jacobians are
defined in Appendix E. The observability matrix M is
defined as:
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~.®
%, 0
xl on o
M= | Y2lala, @Y (145)
M,
o,
Y )}
L OX (k’l)_

where z; and x; denote the measurement and state at
timestamp #; ®,), is the state transition matrix from

timestamp #; to timestamp ¢, based on equation (143). The
k-th block row of the observability matrix M can be written

as:
07
Mc =— P k. 146
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where M are computed in Appendix F. If the M is of full
column rank, the proposed system is fully observable. If we
can find a null space matrix N s.t. M -N = 0, the proposed
system is unobservable and the N is denoted as unob-
servable directions.

By closely inspecting the observability matrix, we have
the following Lemma:

Lemma 1. The proposed MVIS has four unobservable
directions N corresponding to the global yaw rotation
and the global translation.

IGIR Gg 0;

0 T I S ©

- LGVIIJ Gg 0;
030 0303

151 R Gg 03

- [GPMJ ‘¢ I

N=|— LGVLZ[J “g 0, (147)
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These four unobservable directions are inferred based
on the 4 classical unobservable directions for a monocular
VINS system (Hesch et al., 2014). Hence, we can in-
terpret the N accordingly: the first column of N corre-
sponds to the rotation about gravity, and the last three
columns relate to the global positions “p;, Gp,d and pr.
From this lemma, we can conclude that the system ob-
servability will not be improved by simply adding more
inertial sensors (IMUs or gyroscopes). It should also be
pointed out that the velocity of IMU state will become
unobservable if no visual measurements to static land-
marks are available. Hence, without cameras, naively
adding auxiliary IMUs will not significantly improve the
system localization accuracy due to lack of global con-
straints to the base IMU velocity. It can be observed that
the calibration parameters, including base IMU intrinsics
X;,, auxiliary IMU intrinsics x4 , auxiliary gyroscope

in?
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intrinsics Xg, and spatiotemporal calibration Xg,, are
highly related to the sensor motion. Under fully excited
motions, these parameters are observable, which can be
seen from our simulation results in Section 10.1.

9. Degenerate motion analysis

While the degenerate motions for the IMU-Camera spa-
tiotemporal parameters, IMU intrinsics and camera intrin-
sics have been studied (Yang et al., 2019; 2020b; 2023b), in
this paper, we for the first time, study the degenerate mo-
tions for the IMU-IMU and IMU-Gyroscope spatiotemporal
calibration of MVIS.

9.1. Spatiotemporal calibration of auxiliary
inertial sensors

In particular, we have identified the degenerate motions
for the spatiotemporal calibration between the auxiliary
inertial sensors and the base IMU, as summarized in
Table 2, which will be explained in detail below. We refer
interested readers to our companion technical report for
the unobservable directions not reported below (Yang
et al., 2023a).

9.1.1. No rotation. 1f the MVIS undergoes 3D motion but
without rotation, the translation ? p,, between the auxil-
iary and base IMUs, the rotation /R and time offset
between the auxiliary gyroscope and the base IMU, will
be unobservable. The unobservable directions Ny are
given by:

15
[ 0303 0303 030.g ]
0; 0; 035
I 0; 035,
0333 0333 033
0; I 035
09><3 09x3 09><1
Nppg= |- ——— ——— (148)
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9.1.2. One-axis rotation. If the system undergoes 3D
motion but with only one-axis rotation (which is common
for aerial and ground vehicles), the translation “p ;, between
the auxiliary and base IMUs, the rotation ng between the

auxiliary gyroscope and the base IMU will be unobservable,
along with the rotation axis k. Note that we, for the first
time, explicitly found that one-axis rotation will cause the
rotation calibration between the auxiliary gyroscope and
base IMU to become unobservable. We verify this finding
with simulations in Section 10.2. Specifically the additional
unobservable directions are given by:

Table 2. Degenerate motions with related unobservable parameters for auxiliary IMU and gyroscope.

Motion types

Auxiliary IMU

Auxiliary gyroscope

; I
No rotation P,
One-axis rotation
Constant ‘e
Constant ‘@ and v,

Constant ‘@ and v

"p,, along rot. axis
"p,,along rot. axis
/ .
p,, along rot. axis, t,,

’p,, along rot. axis

ng and 14,

7R along rot. axis
;gR along rot. axis, 74,
;gR along rot. axis, #,

ng along rot. axis, 1,
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9.1.3. Constant local angular velocity. 1f the MVIS un-
dergoes non-zero constant local angular velocity
with random 3D translation for the base IMU, the
translation 'p, between the base and auxiliary IMUs is
still unobservable along the rotation axis. In addition,
the rotation ;R and the time offset 75, between the
base IMU and the auxiliary gyroscope become
unobservable.

9.1.4. Constant local angular and global linear velocity. 1f
the MVIS undergoes non-zero constant ‘e and constant “v,
for base IMU, the translation and time offsets between the
base and auxiliary IMUs, the rotation and time offset be-
tween the base IMU and the auxiliary gyroscope become
unobservable.

9.1.5. Constant local angular and linear velocity. When
the ‘@ and v are constant and non-zero for the base IMU,
the time offset 7; between the base IMU and camera, as
well as the time offset 7, between the base IMU and the
gyroscope are both unobservable. However, the time
offset #;, between the base and auxiliary IMUs is still
observable (see Figure 6), which is unexpected. This is
due to the fact that the local constant velocity assumption
will be invalid for the auxiliary IMU if the base IMU is
undergoing constant local linear and angular velocity.
The local angular velocity and acceleration of the aux-
iliary IMU can be represented as:
gy =Rl

(150)

“a, =iR(‘a + |'a|'p, + 0] ['0]'p,) (5D

where ‘a refers to the angular acceleration of the base IMU,
the local sensor body acceleration ‘a,, is defined in equation
(3). If the base IMU undergoes constant local linear and
angular velocity motion, the angular velocity of the aux-
iliary IMU ‘@ is also constant [see Eq. (150)]. The ‘a, and
‘a of the base IMU should be zeros. Hence, equation (151)
yields:

“a=iR(|'0]|'0)'p, ) (152)
If ‘e is constant but not zero, the local linear acceleration
lag, should not be zero. This breaks the local constant linear
velocity assumption for the auxiliary IMU. Furthermore, we
find that the norm of “v is constant:

]“V:f’R('V + L’wJIp,J

But the non-zero acceleration a, will cause the bearing
change of local velocity, which makes the time offset be-
tween the base and auxiliary IMUs observable. This is
further verified through our simulation results (see
Figure 6).

(153)

9.2. Intrinsics for auxiliary inertial sensors

In our previous work (Yang et al., 2020b; 2023b), the
degenerate motions of IMU intrinsics for monocular
VINS have been studied. In this work, we have found
that the degenerate motion primitives in (Yang et al.,
2023Db) still hold for the auxiliary IMU intrinsics with
our inertial model choice (see Table 3). Note that
fully excited motions are needed in order to make all
intrinsic parameters observable for the auxiliary IMUs/
gyroscopes.

Table 3. Summary of basic degenerate motions for auxiliary
inertial intrinsics calibration (any combinations of these unit
motion primitives are degenerate).

Motion types Nullspace Dim.  Unobservable parameters

Constant @, 1 da,,

Constant v@w, 2 di,y5 Ay,

Constant w3 3 Aty A5 At
Constant %a; 3 d,,,, pitch and yaw of % R
Constant %g, 3 dy,ydy, roll of ﬁqu
Constant %g; 3 At oa> s> At
Constant “a; 3 g tgrs Ty
Constant “a, 3 LI VI Y
Constant “a; 3 gy Ugss g
Constant %, 1 dg,,

Constant %@, 2 dG,,» da,,

Constant % @3 3 dG,4> 4G5> 4G,

Note that d« is column-wise element from D4, dg, is column-wise el-
ement from Dg, . t4,.,i = 1...9 are the elements from T,, for g-sensitivity.
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10. Simulation results

The simulator, which is provided within the OpenVINS
project (Geneva et al., 2020) along with the multi-IMU and
RS extension from (Eckenhoff et al., 2021) and IMU in-
trinsic extension (Yang et al., 2023b), is leveraged to
provide synthetic measurements with perfect groundtruth
for verification of the proposed MVIS under different
motion conditions. In the simulation, one base IMU
IMUDb, one auxiliary IMU IMUaO, one auxiliary gyro-
scope IMUal, one global shutter (GS) camera CAMO and
one rolling shutter (RS) camera CAM1 are simulated. Note
that both cameras are simulated with 10 Hz frame rates.
The basic configuration of the simulator is listed in
Table 4. The three trajectories used for the simulation are
as follows:

¢ Fully excited motion (left of Figure 2): All axes of the
accelerometer and gyroscope are fully excited with a
general 3D handheld trajectory.

® One-axis motion (middle of Figure 2): The sensor suite
moves in 3D space but with only yaw rotation. The
trajectory is modified based on tum_rooml (Schubert
et al., 2018).

¢ Circular-planar motion (right of Figure 2): The sensor
suite moves in x-y plane with constant local angular and
linear velocities.

Specifically, we first build a B-spline with trajectory
keyframes of the base IMU trajectory. Then, we can
compute the acceleration of base IMU by calculating double
derivatives for the position component of the B-spline at
specified time stamp. We leverage rigid body constraints
between base and auxiliary IMU to simulate the auxiliary
IMU readings. The base IMU acceleration can be trans-
ferred to the auxiliary IMU frame with the groundtruth
angular velocity and acceleration, which are also computed
from derivatives of base IMU B-spline. The angular ve-
locity of the auxiliary IMU can be simply computed with
angular velocity from base IMU and the rigid rotation
between based IMU and auxiliary IMU. Then white
Gaussian noises are added to the auxiliary IMU readings
based on equations (1) and (2).

To simulate RS visual bearing measurements, we
follow the same logic in (Eckenhoff et al., 2021; Li and
Mourikis, 2014; Yang et al., 2023b). Static environmental
features are first generated along the trajectory at random
depths and bearings. Then, for a given imaging time, we
project each feature in view into the current image frame
using the true camera intrinsic and distortion model and
find the corresponding observation row. Given this
projected row and image time, we can find the pose at
which that RS row should have been exposed. We can
then re-project this feature into the new pose and iterate

Table 4. Simulation parameters and prior standard deviations that perturbations of measurements and initial states were drawn from.

Parameter Value Parameter Value
IMU Dw 0.003 IMU Da 0.003
Rot. atol (rad) 0.003 MU Tg 0.001
Gyro. Noise (rads™' vVHz ') 1.696¢-04 Gyro. Bias (rads—2 vHz ™) 1.939¢-05
Accel. Noise (ms~2vHz™!) 2.000e-3 Accel. Bias (ms™ VHz ") 3.000e-3
Focal Len. (px/m) 1.0 Cam. Center (px) 1.0
dl and d2 0.002 d3 and d4 0.002
Rot. Ctol (Hz) 0.004 Pos. IinC (m) 0.008
Pixel Proj. (px) 1 Cam-IMU Toff (s) 0.008
IMU-IMU Toff (s) 0.003 Gyro-IMU Toff (s) 0.003
Rot. Iatolb (rad) 0.003 Pos. Tainlb (m) 0.005
Cam freq. (Hz) 10/10 IMU freq. (Hz) 250/300/200
E 5 7 01
ot 226 J s -1
® 2.2 N5 N
5 N ~>- e
-2 4
S J. 6 -
x-axis(m) 15 ) x-axis(m) y-axis(m) y-axis(m) 5 -4 x-axis(m)

y-axis(m)

Figure 2. Simulated trajectories. Left: calib_3d with fully excited 3D motion, total length: 89.4 m; Middle: fum_room with one axis
rotation and 3D translation, total length: 134.5 m; Right: circle_planar with circular planar motion (constant z and only yaw rotation),
total length: 157.1 m. The green triangle and red circle denote the beginning and ending of these trajectories, respectively.
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until the projected row does not change (which typically
requires 2-3 iterations). We now have a feature mea-
surement which occurs at the correct pose given its RS
row. This measurement is then corrupted with white
noise. The imaging timestamp corresponding to the
starting row is then shifted by the true IMU-Camera time
offset ¢, to simulate cross-sensor delay. In the following
simulations, the RPNG IMU model (see Section 3.1) is
used to be aligned with the analysis.

It is important to note that, in the following sections, we only
present the most prominent results due to space limits, while
comprehensive simulation and experimental results can be
found in our companion technical report (Yang et al., 2023a).

10.1. Fully excited motion

We first evaluate the proposed system on a general 3D
handheld trajectory, see Figure 2, which fully excites all
6 axes of the sensor platform. To save space, only selected
parameters are presented, but all parameters are perturbed
and estimated during our simulation runs. The camera re-
lated results are shown in Figure 3 while the IMU related
results are shown in Figure 4. For each figure, there are five
different runs with different initial state perturbations.

It is clear that all parameters are able to converge toward
the true value within the first 2040 s of the trajectory, which
verifies our conclusion that all the calibration parameters for
MVIS are observable given fully excited motions. These
results also verify that the proposed MVIS indeed is able to
perform calibration of all parameters for visual and inertial
Sensors.

10.2. Degenerate one-axis motion

We now perform a simulation where the trajectory only
exhibits one-axis rotation about the global z-axis to verify

Calib. CAMO Intrinsics

CAMO-IMUb Ori.

CAMO-IMUb Toff

our identified degenerate motion, see Figure 2. Shown in
Figure 5, multiple parameters are unable to converge with
either estimation errors or estimation uncertainties (3o
bounds). This matches the parameters which we have iden-
tified as unobservable under this motion. We can see that the
3 parameters d,,1, d,,», and d,,3 for both the base IMU IMUDb,
auxiliary IMU IMUaO, and auxiliary gyroscope IMUal are
unable to be calibrated. Additionally, the y component for the
rigid position between the camera to base IMU (CAMO-IMUb
Pos.) cannot converge at all. The z component for the position
of the auxiliary IMU to base IMU (IMUa0O-IMUb Pos.) is
unable to be calibrated as expected. Note that the y component
of ‘pc and the z component of ‘p ;, are all along the rotation
axis which is degenerate.

Furthermore, it can be seen that we are unable to calibrate
a portion of the relative rotation between the base IMU and
auxiliary gyroscope (IMUal-IMUb Ori.) is one-axis ro-
tation, which can be calibrated nicely in the fully excited
motion case. This further confirms our degenerate motion
analysis summarized in Table 2.

10.3. Degenerate circular-planar motion

We also perform a simulation where the sensors follow a
circular-planar motion shown in Figure 2. This is a typical
example motion of constant angular and linear velocity. The
translation and the time offset of CAM0-IMUb and CAM1-
IMUD, the translation of IMUa0-IMUb and the orientation
of IMUal-IMUb are not observable. Shown in Figure 6,
their 30 bounds and estimate errors are kept as almost
straight lines and do not converge at all. These results
further verify our identified degenerate motions shown in
Table 2.

The time offset between auxiliary gyroscope and based
IMU (IMUa1-IMUb Toff)is unable to be calibrated, while
the time offset between auxiliary IMU to base IMU
(IMUa0-IMUDb Toff) is still observable. This can be seen

Calib. CAM1 Intrinsics

CAM1-IMUb Pos.
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Figure 3. Simulation results for fully excited motion. All the cameras (CAMO and CAM1) related parameters converge nicely. 36 bounds
(dashed line) and estimation errors (solid line) are plotted for five different runs (shown in different colors) with different initial

calibration perturbations.
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Figure 4. Simulation results for filly excited motion. All the base IMU (IMUb) and auxiliary IMUs (IMUa0O, IMUal) related parameters
converge nicely. 3o bounds (dashed line) and estimation errors (solid line) are plotted for five different runs (shown in different colors)

with different initial calibration perturbations.

by the estimation errors converging in Figure 6 and thus
verifies our degenerate motion analysis in Section 9.1.5.
Note that the rolling shutter readout time of the CAMI
converges quite slowly, given that the sensor motion is not
fully excited.

The calibration results for IMU related intrinsics are
shown in Figure 7. It is clear that the gyroscope correction
D,, and the accelerometer correction D, do not converge at
all. The convergence of g-sensitivity T, also becomes much
worse compared to fully excited motion in Figure 4 which
results from fully excited motions.

11. Experimental results

The proposed self-calibration system is further evaluated
using our own visual-inertial sensor rig (VI-Rig) as
shown in Figure 8. Specifically, it contains a MS-GX-25,
MS-GX-35, Xsens MTi 100, FLIR blackfly camera,
RealSense T265 tracking camera (which contains an
integrated BMI055 IMU along with a fisheye stereo
global shutter camera), and 640x480 ELP-960P2CAM-
V90-VC USB 2.0 RS-stereo camera. We perform three
sets of experiments.”

¢ Fully excited motion with 4 IMUs + 3 GS Cameras.

¢ Fully excited motion with 4 IMUs + 2 GS Cameras +
2 RS Cameras.
e Planar motion with 4 IMUs + 2 GS cameras.

In these experiments, we evaluate the intrinsic calibra-
tion with Kalibr model [see Section 3.1], in order to
facilitate a direct comparison to Kalibr-the calibration
toolbox (Furgale et al., 2013). We also investigate if the joint
calibration performance changes with different number of
IMU/camera sets. In addition, planar motion, one of the
most commonly seen degenerate motions, is also investi-
gated to show its effects on calibration. The results further
verify our degeneration motion analysis and have signifi-
cant practical implications on practitioners performing
calibration on constrained autonomous platforms (e.g. aerial
or ground vehicles).

The boxplots are used to demonstrate the calibration
results for the proposed MVIS and Kalibr. When drawing the
boxplots for the translation part of extrinsics, the camera
intrinsics and time offsets, we use the average estimates of the
MVIS with all available sensors as reference value and then
compute the error of each estimate from Kalibr or MVIS to
this reference. When drawing the boxplots for the orientation
extrinsic, we select the first estimate of MVIS with all
available sensors for reference value. The middle line of each
boxplot indicates the average errors while the red star +
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Figure 5. Simulation results for one-axis motion. The translation of CAMO-IMUDb (y component) and IMUa0O-IMUb (z component), the
rotation of TMUa 1-IMUb (z component), the d,, ;, d,,», and d,,3 of IMUb, TMUa0, and TMUa1 show inability to converge (sigma bound
does not decrease due to no information gain). 3o bounds (dashed line) and estimation errors (solid line) are plotted for five different runs
(shown in different colors) with different initial calibration perturbations.
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Figure 6. Simulation results for circular-planar motion. The translation of CAM0-IMUb, CAM1-IMUb, IMUaO-IMUD, the rotation of
IMUal-IMUD, the time offset of CAMO-IMUb, CAM1-IMUDb, and IMUal-IMUb all show inability to converge (sigma bound does not
decrease due to no information gain). Note that the RS readout time of CAM1 and the time offset of IMUa 0-IMUb converge slower due to
less motion excitation. 3¢ bounds (dashed line) and estimation errors (solid line) are plotted for five different runs (shown in different

colors) with different initial calibration perturbations.

indicates outliers. IMU intrinsics are computed relative to the
“ideal” inertial model, with identity matrices for gyroscope
correction D, accelerometer correction D, and /R, except
for g-sensitivity, T, which is set as zero matrix.

11.1. Four IMUs + three GS cameras

All the four IMUs, FLIR blackfly camera, and the GS stereo
camera from RealSense T265 are used for this evaluation.

All cameras used in this experiments are not rolling
shutter to ensure fair comparison against the baseline Kalibr
(Furgale et al., 2013), which only supports IMU-Camera
calibration with global shutter cameras. Total 10 datasets
were collected with an AprilTag board, on which both the
proposed system and the Kalibr calibration toolbox were
run to evaluate the calibration accuracy and repeatability
statistics on all calibration parameters.

During data collection, all 6-axis motion of the VI-Rig
was excited to avoid degenerate motions for calibration
parameters.

11.1.1.  Calibration  with  different  number  of
cameras. When running Kalibr, all the IMUs and cameras
are used to achieve the best calibration results from Kalibr.
When running our proposed MVIS, we use all the four
IMUs with 1/2/3 camera, respectively. In this way, we can
evaluate how the number of used cameras affects the cal-
ibration performance.

The final converged estimates of the calibration pa-
rameters from both systems on these 10 datasets can be
shown in the box plots in Figure 9. The proposed MVIS
was run with one (green), two (black), and three (blue) of
the cameras. The baseline Kalibr (magenta) was run on all
three cameras. The x-axis of figures in the second and
third row denotes the base IMU (GX-25 IMUDb) as b and
auxiliary IMU (GX-35 IMUa0O, Xsens IMUal, and
T265 IMU IMUa?2)as 0, 1, and 2 respectively. Note that
the camera intrinsics are required to be fixed for Kalibr
when performing IMU-Camera calibration. Hence there
is only one value for each camera intrinsics for Kalibr in
Figure 9.
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Figure 7. Simulation results for circular-planar motion. The gyroscope and acceleration related parameters (gyroscope correction D,,,
accelerometer correction D, and g-sensitivity T,) for both base and auxiliary IMUs do not converge or converge much slower than the
case of fully excited motions. 3¢ bounds (dashed line) and estimation errors (solid line) are plotted for five different runs (shown in

different colors) with different initial calibration perturbations.

Figure 8. The self-assembled sensor rigs in real-world
experiments, containing one Mircostrain GX-25, one
MircroStrain GX-35, one MTI Xsens IMU, one BalckFly camera,
one IntelRealsense T265 tracking camera (with a GS fisheye stereo
camera and an BMI055 IMU inside), and one ELP stereo RS

camera.

The range of the boxplot in the figure indicates the
convergence repeatability of calibration parameters. The
proposed MVIS needs an initial guess for the calibration
parameters to start the optimization and the initial guess

distribution are shown in the first row of Figure 9 for the
proposed method. The initial guess for d> of CAMO
distortion model is within +0.5 while the final estimated
values are between 0 and 0.1. The initial guess for time
offset for CAMO-IMUD is within +5 ms, while the final
converged values from the proposed MVIS are most
cases around £0.5 ms. These results show that the cal-
ibration parameters can converge robustly with the
proposed MVIS.

It can be observed from Figure 9 that the calibration
estimation convergence of IMU/camera intrinsics and
CAMO-IMUD translation are better in blue color than those in
green or black colors, which indicate that more cameras can
be used to improve overall calibration convergence. This is
probably due to improved visual feature estimates from
longer feature tracks or wider field-of-view due to multi-
view constraints when more cameras are used in the
experiment.

11.1.2. Comparison with Kalibr. One major difference
between the Kalibr and our MVIS is how to represent the
sensor-platform’s trajectory. Kalibr leverages the camera
poses, based on AprilTag-based visual odometry (VO), to
build a B-spline-based continuous-time representation of
the trajectory. As such, the IMU and camera measurements
can be easily modeled with the poses at any time given by
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Figure 9. Calibration results for CAMO and four IMUs related parameters over 10 datasets collected with Intel Realsense T265 (GS),
FLIR Blackfly camera (GS), and four IMUs. The proposed MVIS was run with one (green), two (black), and three (blue) of the
cameras. The baseline Kalibr (magenta) was run on all three cameras and all four IMUs. The x-axis of figures in the second and third row
denotes the base IMU (IMUDb) as b and auxiliary IMU (IMUa0-IMUa?2) as 0, 1, and 2 respectively. For IMU-IMU transformation
{R Iitolb, p Iiinlb}, =0, 1, 2. Note that the calibration convergence of camera/IMU intrinsics and camera to IMU translation are

improved if more cameras are used.

this B-spline. Kalibr optimizes both the calibration pa-
rameters and the B-spline parameters (knots).

In contrast, the MVIS represents the trajectory using the
discrete-time IMU states at imaging times. The IMU mea-
surements are used to build the IMU factors with pre-
integration while the asynchronous visual/auxiliary inertial
measurements are related to the trajectory through linear in-
terpolation (see Sections 6 and 7). The mean values of each
boxplot in Figure 9 clearly demonstrate that the proposed
MVIS achieves competing calibration accuracy as the Kalibr.

11.1.3. IMU intrinsic quality. By evaluating the IMU
calibration results across the four IMUs of IMUb, IMUa0,
IMUal, and IMUaZ2 (denoted as b, 0, 1, and 2 in the
second and third row in Figure 9) used in the experiments,
we clearly see that IMUa2, a relatively low-cost
BMIO055 IMU, demonstrates larger scale correction for
gyroscope and accelerometer than other three high-end
IMUs (GX-25 IMUb, GX-35 IMUaO, and Xsens
IMUal). This is expected as the IMUb, IMUaO, and
IMUal are supposed to have more stable and sophisti-
cated factory calibration than IMUa2. This result, aligned
with our previous work for single IMU-Camera cali-
bration (Yang et al., 2023b), further validates the pro-
posed MVIS can generate reasonable and accurate
calibration for IMUs.

11.1.4. Timing evaluation. While the B-spline-based
continuous-time representation naturally enables the in-
corporation of asynchronous sensor measurements, multiple
high-frequency IMUs can easily causes thousands of IMU
cost terms to be inserted into the optimization, significantly
increasing the computation. The proposed MVIS leverages
ACP to integrate all the IMU measurements from one IMU
between two image frames into one single factor, which
greatly simplifies the graph and saves computation. To see

this, in our experiments, we also recorded the processing
time of the proposed MVIS and Kalibr when running the
calibration with all the IMUs and cameras on these
10 datasets.

Specifically, a ThinkPad P52 with Intel i17-8850H CPU@
2.60GHzx12 and 32 GB RAM was used. The average
processing time for MVIS is approximately 807.4 s and
2208.3 s for Kalibr. We attribute the computation savings of
the proposed M VIS primarily because (1) Kalibr by default
has 100 knot poses per second for constructing the B-Spline,
while the MVIS creates IMU states based on camera fre-
quency (30 Hz). (2) Kalibr needs to form IMU cost terms
based on IMU frequency (more than 100 Hz), while the
MVIS leverages the pre-integration and all the IMU mea-
surements between two camera timestamps are used to-
gether, leading to a significant smaller number of IMU
factors in the MVIS. Note that we have also implemented
both numerical and analytical Jacobians for the proposed
MVIS. The numerical and analytical Jacobians can achieve
similar accuracy results but with 10%-14% running time
saving when using analytical Jacobians.

11.2. Four IMUs + two GS cameras + two RS
cameras

All the four IMUs, GS stereo camera from RealSense
T265 and ELP RS stereo camera are used in this evaluation.
Both GS and RS cameras are used in this experiment to
show that our proposed MVIS supports full-parameter joint
calibration with GS and RS cameras, while Kalibr does not
support joint calibration of IMU and RS cameras, nor GS
and RS cameras. Total 15 datasets were collected with an
AprilTag board, on which both the proposed MVIS and the
Kalibr calibration toolbox were run to report calibration
accuracy and repeatability statistics. During data collection,
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Figure 10. Calibration results over 15 different datasets collected with Intel Realsense T265 (GS), ELP-960P2CAM-V90-VC USB 2.0
(RS, 640x480) and four IMUs. The proposed MVIS (blue, using all the sensors) and Kalibr baseline (magenta, using only

T265 cameras with all the IMUs) statistics are reported. The top x-axis denote the two global shutter cameras (CAM0, CAM1)as 0 and 1,
respectively; The bottom x-axis denotes the base IMU (IMUD) as b, and auxiliary IMUs (IMUaO, IMUal and IMUa2)as 0, 1, and 2,
respectively. For CAM-IMU transformation {R_Citol, p_Ciinl}, i=0, 1. For IMU-IMU transformation {R_Iitolb, p Iiinlb},

i=0, 1, 2.
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Figure 11. Calibration results over 15 different datasets collected with Intel Realsense T265 (GS), ELP-960P2CAM-V90-VC USB 2.0

(RS, 640x480) and four IMUs. The proposed MVIS (blue, using all

the sensors) and Kalibr rolling shutter baseline (magenta, using

only the RS cameras with all IMUs) statistics are reported. The top x-axis denote the two rolling shutter cameras (CAM2, CAM3) as 2 and

3, respectively; The bottom x-axis denotes the base IMU (IMUDb) as b,

and auxiliary IMUs (IMUa0, IMUal, and IMUa2)as 0,1, and 2.

For CAM-IMU transformation {R_Citol, p_ Ciinl}, i=2, 3. For IMU-IMU transformation {R Iitolb, p Iiinlb}, i=0, 1, 2.

all 6-axis motion of the VI-Rig was excited to avoid de-
generate motions for calibration parameters.

11.2.1. Calibration for IMU and GS/RS. During evalua-
tion, all the GS/RS cameras and IMUs are used for the
proposed MVIS. Since Kalibr does not support hybrid
calibration of GS and RS cameras, we first run Kalibr
with all four IMUs and only GS stereo camera from
RealSense T265 (CAMO and CAM1). The results with
boxplots are presented in Figure 10. Then, we run
Kalibr with all four IMUs and ELP RS stereo camera
(CAM2 and CAM3) using a Kalibr extension (Huai et al.,
2022). The results are presented in Figure 11. Note that in
the evaluations, the left&right cameras from the stereo of
RealSense T265 are denoted as CAMO and CAM1, while the
left&right cameras from ELP RS stereo are denoted as CAM2
and CAM3. In this experiment, we did camera calibration for
each collected dataset with Kalibr. Therefore, we can have the
statistics for the camera intrinsic estimates in Figures 10 and
11, from which, we can see that the mean estimates of both the
IMU and camera related parameters are similar for both the
proposed MVIS and Kalibr.

The boxplot ranges of camera and IMU related pa-
rameters from the proposed MVIS are much smaller than
those of the Kalibr, which shows that MVIS is able to

achieve much better estimation convergence and repeat-
ability than Kalibr, especially for the case of using ELP RS
cameras. This result verifies that the proposed MVIS can
handle the joint calibration of IMU-GS/RS cameras, which
is missing from Kalibr. In this experiment, MVIS used
both GS/RS cameras while the Kalibr is evaluated on only
GS or only RS cameras. Hence, this experiment further
proves that the joint calibration of multiple sensors (i.e.
cameras) does improve the calibration accuracy and
repeatability.

It is interesting to see that the IMU calibration results (the
scale terms for gyroscope correction D,, and accelerometer
correction D,) between these two experiments (Figure 9 in
Section 11.1 and Figure 10 or Figure 11 in Section 11.2) are
very similar. This further validates the stability of the
proposed MVIS.

11.2.2. Evaluation of multiple gyroscopes calibration. We
further evaluate the proposed MVIS with multiple auxiliary
gyroscopes. With the same 15 datasets, all cameras, base IMU
(GX-25 IMUD) and the gyroscopes of three auxiliary IMUs
(GX-35 IMUa0, Xsens IMUal, and T265 IMU IMUa2) are
used for evaluation with MVIS. The calibration results of MVIS
with these auxiliary gyroscopes (in black), compared to the
MVIS (in blue) and Kalibr (in magenta) with full auxiliary
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IMU, are shown in Figure 13. Note that the auxiliary gyroscope
does not contain / R. Hence, we set /R =I5 as default.

It is clear from the results that MVIS with multiple
auxiliary gyroscopes still can achieve almost the same
estimates for gyroscope scales and time offsets as MVIS and
Kalibr with full auxiliary IMUs (Figures 12 and 13).

At the same time, we can also see that the calibration of
rotation between auxiliary gyroscope and base IMU (the
second row of Figure 13) from MVIS with multiple gy-
roscopes is slightly worse than that of MVIS and Kalibr with
full IMUs, especially for IMUaZ2. This might be due to the
fact that accelerometer measurement can benefit the ex-
trinsic calibration between IMUs. We also want to point out
that the rotation calibration difference is smaller than 0.5°,
which is not significant.
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11.2.3. Temporal calibration. The temporal calibration,
including time offsets and rolling shutter readout time, are
presented in Figure 12, which shows the results using base
IMU and all the full auxiliary IMUs. The 0, 1, 2, and 3
from the CAM Toff and Readout refers to CAMO-CAMS3.
From Figure 12, it is clear that the time offset calibration is
almost the same for the proposed MVIS and the Kalibr. The
readout time calibration errors are all within 2 ms.

From the results, we can also find out that the triggering
time offset of the RealSence T265 is not stable. As can be seen
from the left of Figure 12, there are outliers as large as 30 ms
between the base IMU IMUDb and the right camera of T265.
Similarly, the time offset of the IMU from T265 (IMUa2) to
base IMU (IMUD) is also slightly unstable from the estimates
of MVIS and Kalibr, as outliers (red crosses) in right of
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Figure 12. Temporal calibration results over 15 different datasets with Intel Realsense T265 (GS), ELP-960P2CAM-V90-VC USB 2.0
(RS, 640x480) and four IMUs. The proposed MVIS (blue) and Kalibr rolling shutter baseline (magenta) statistics are reported. The
x-axis of the left three figures denotes the two global shutter camera CAM0, CAM1, two rolling shutter camera CAM2, CAM3. The x-axis of
the right figure denotes the time offsets between the base IMU (IMUD), and auxiliary IMUs (IMUaO, IMUal, and IMUa?2).
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Figure 13. Calibration results over 15 different datasets with Intel Realsense T265 and four IMUs. The proposed MVIS with a base IMU
and only gyroscopes of the 3 auxiliary IMUs (black), MVIS with a base IMU and 3 auxiliary IMUs (blue) and Kalibr baseline
(magenta) statistics are reported. The x-axis denotes the base IMU (IMUb) and auxiliary IMUs (IMUa0, IMUal, and IMUaZ2) for all

algorithms. For IMU-IMU transformation {R Iitolb}, i=0, 1, 2.
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Figure 12 are obvious. Note that the 0, 1, and 2 in the plot of
IMU Toff from right of Figure 12 denote the time offsets of
IMUa0, IMUal, and IMUa2 to IMUb, respectively.

As shown in the right of Figure 12, the time offset
between based IMU IMUb and the auxiliary IMU IMUa?2
(BMIO055 from T265) also has 10 ms offsets (from near-5 ms
to 5 ms). This is probably due to the build-in drivers of this
relatively low-cost sensor (T265). This figure shows that the
estimate results from Kalibr (magenta) and the proposed
MVIS (blue) can identify the temporal calibration problems
of T265, which validates that the proposed MVIS can be
used to identify the temporal instability of T265 and provide
reliable calibration results.

11.3. Planar motion with 4 IMUs + 2 GS
cameras

We further verify the degenerate motions with a dataset
collected under planar motion. All four IMUs and the GS
stereo camera from RealSense T265 are used for data
collection. When collecting data, the VI-Rig is put on a chair

with wheels and moved around the room in planar motion.
The proposed MVIS is run on this dataset 4 times with
different perturbations to the initial values of IMU-IMU
translations.

Under planar motion, the rotation axis, roughly along the
local z-axis for the base IMU, is fixed for the VI-Rig. Hence,
the IMU-IMU translation along the rotation axis and the
dy, d,», d,; from gyroscope correction D,, should be
unobservable. The calibration results for these parameters
can be clearly seen in Figure 14 and they diverge errone-
ously during optimization.

As a comparison, we use the same sensor rig and same
perturbations to IMU-IMU translation to run the proposed
MVIS under fully excited motions. As shown in Figure 15,
all these calibration parameters can converge well when
fully excited motions are given, as compared to Figure 14.

11.4. Discussion on estimation convergence

We formulate the MVIS calibration and estimation as
a nonlinear least squares (NLS) problem, which is a
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Figure 14. Calibration results for one planar motion dataset collected with Intel Realsense T265 and four IMUs. The translation of

IMUb-IMUaO, IMUb-IMUal, and IMUb-IMUaZ2, the gyroscope

correction D,, of IMUb, IMUa0, IMUal, and IMUa2 cannot

converge under planar motions, which verifies our observability analysis. Different colors represent different initial perturbations to the

IMU-IMU translations.
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Figure 15. Calibration results for one fully-exicted motion dataset collected with Intel Realsense T265 and four IMUs. The translation of
IMUb-IMUaO, IMUb-IMUal, and IMUb-IMUa2, the gyroscope correction D,, of IMUb, IMUaO, IMUal, and IMUa2 converge
nicely compared to planar motion case. Different colors represent different initial perturbations to the IMU-IMU translations.
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non-convex optimization problem and its global minimum
is hard to guarantee. Also, as it is almost impossible to
obtain the “true” calibration for real sensor rigs, evaluating
the global optimum in real world becomes formidable. As
such, we often use engineering intuitions to improve the
calibration in terms of accuracy, convergence and repeat-
ability, e.g., by fully exciting sensor motions, improving
calibration priors and delaying adding auxiliary IMU fac-
tors. Although there is no theoretical guarantee, our sim-
ulation results have shown that the proposed MVIS
calibration is able to converge to the true values.

Based on our analysis, we need fully excited motions (3D
rotation and 3D translation) for all the sensors to make sure all
the related calibration parameters can converge (see Sections
10.1, 11.1, and 11.2). If the MVIS undergoes any degenerate
motions listed in Section 9, some calibration parameters are
unlikely to converge (see Sections 10.2, 10.3, and 11.3). From
the extensive simulations and real world experiments, we find
that the proposed MVIS estimation with full-parameter cali-
bration can converge in most cases.

Given fully excited motions, the initial guess and prior
information for these calibration parameters are also
crucial for estimator convergence. As discussed earlier,
the IMU intrinsics are in most cases not large in values,
and hence initialized with “ideal” intrinsic values:
identity matrices for gyroscope correction D,,, acceler-
ometer correction D,, /R and zero matrix for
g-sensitivity T,. Although the camera intrinsic and dis-
tortion parameters are usually initialized based on the
camera calibration using OpenCV (OpenCV Developers
Team, 2021) or Kalibr (Furgale et al., 2013), the proposed
MVIS can handle inaccurate camera intrinsics as shown
in Figure 9. For the IMU-IMU/camera extrinsics, the
initial orientation part is decided manually while the
translation part can be measured by hand. This can be
improved by using trajectory alignment of visual tra-
jectories and IMU integrated trajectory segments. The
temporal related parameters are most cases initialized
through orientation alignment. Through real-world ex-
periments, see first row of Figure 9 and IMU-IMU Pos.
in Figure 15, we find that the proposed MVIS estimation
with full-parameter calibration can converge even with
various perturbations to initial guesses.

The more sensors used, the more calibration param-
eters will be included in the state, resulting in larger NLS
problems. This would potentially pose challenges to
convergence of the proposed MVIS when estimating all
the related calibrations at once, especially when the initial
guesses for these calibrations are not of good quality. To
address this issue, we add the cost terms from auxiliary
sensors later than the base inertial sensor costs, after base
inertial sensor related parameters converge. In our ex-
periments, we first only optimize the base IMU and the
cameras related costs until the landmark feature estimates
converge. After that, the auxiliary IMUs/gyroscopes cost
terms will be added to the NLS for solving their related
calibration parameters. In effect, from our experiences on

the data collected using VI-Rig, 5-20s of the data with
fully excited motions are sufficient for the landmarks to
converge.

12. Conclusions and future work

In this paper, we have developed a multi-visual-inertial system
(MVIS) estimation algorithm which can fuse multiple IMUs,
gyroscopes and GS/RS cameras, with a special focus on full-
calibration of all intrinsics, extrinsics, and temporal param-
eters (including time offsets and readout times for RS cam-
eras). In particular, we proposed ACE, a novel IMU pre-
integration which incorporates IMU intrinsic parameters.
Based on ACP, we fuse multiple IMU measurements by
leveraging IMU-IMU rigid body constraints with spatio-
temporal and inertial intrinsic calibration. We have performed
MVIS observability analysis, proving that four standard
unobservable directions corresponding to global yaw and
global translation remain, while the calibration parameters are
observable under fully excited motion. Moreover, we have
also, for the first time, identified the commonly seen de-
generate motions that can cause IMU-IMU calibration pa-
rameters to become unobservable. We show that the rotation
calibration between IMU and gyroscopes is unobservable
given one-axis rotation, while the time offset between IMUs is
observable given non-zero constant local angular and linear
velocity for one of the IMUs. Extensive simulations have been
performed to evaluate the proposed system and verify the
degenerate motions identified for these calibration parameters.
Moreover, a self-made sensor rig that consists of multiple
commonly-used IMUs and GS/RS cameras were used for data
collection and system evaluation. In particular, three sets of
experiments were performed to fully evaluate the calibration
accuracy of the proposed M VIS against the state-of-art sensor
calibration framework Kalibr. A total of 25 datasets were
collected with the VI-Rigs to provide detailed statistics for
calibration convergence and repeatability of the proposed
MVIS and Kalibr.

In the future, we will investigate vehicle dynamics (e.g.,
wheel odometry on ground vehicle (Lee et al., 2020),
contact dynamics from legged robots (Fourmy et al., 2021),
or MAV dynamics (Chen et al., 2022)) in MVIS calibration.
Calibrating M VIS under degenerate motions is of particular
interest along with how sensor configurations/installation
affect calibration performance. We will also develop effi-
cient marginalization to enable the proposed batch
optimization-based MVIS to perform online calibration
amenable for real-time performance.
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The block Jacobians for equation (95) are written as:
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C. Bias and intrinsic Jacobians

The biases or IMU intrinsic Jacobians can be recursively
computed as:
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D. State transition matrix

The detailed derivations for ®z, ® 4, g, P and Pr

can be found as:
(I)in mla (I)Ain
s q)A -
I 0 I

D,

(DB =

0

@, @

®G = s (I)calib = I3 ®F =1
0 I

The state transition of @5 and ®, have the same structure.
We can grab the gyroscope part of @ to get ®. Therefore,
only @3 is shown in this paper for clarity. The ®; is:

(1)11 03 03 (D14 (I)IS
D, I; Lot Dy Dy
Q= |D; 0; I; @y D3 (183)

03 03 03 I3 03
03 03 03 03 I3
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where we have:

Lo
®, = 1R
1 ~
— G G G G 21 G
Dy = _{ | 7 V1,0 ) g&th 1kR
_ Gy Gg _G )
(I)3] = —L Vi — Vi — géthIkR
D, = —Jrél‘k {VRDW
D, = gRE4 {V_RDW
®y, = YR=Z;!RD,

(D15 = Jrétk {vﬁﬁwfg gﬁﬁa

Note that J,éJ,(ﬁk,kH). The @, is:

(Din =

where we have:

(I)inll
(I)inZI
(I)in31
(DinIZ
(I)in22
D3
(I)in13
(I)in23
D33
(I)in14

(I)in24 =

(Din34

‘I)inll (Din12 (I)inlB q)in14
Do iy DPiz Py
D3 iz Dizz Py
05 0; 0; 0;
05 0; 0; 05
= J,01,' RHp,
_ _Gp=In
- _IkR'_'4wRHDw
o Cp=_1 5
- _IkR_'3wRHDw

= —J,0t! RD, T, 'RH),
—(R(=: + 24, RD,T,)
—R (= + =/ RD,T,)
= —J,04. RD, Hy,
=¢RE,! RD,Hy,
=¢RE;/RD, H,

'RH),

BN
RHp,

— —R(=, +5RD,T, ) |

(184)

E. Measurement Jacobians

Jacobians of camera measurements are computed as:

AT AT G
Hep = HPfICR IGR { Lpr_Gle[ R —L 03
Hee = [Hee,, He, |

~T A~
Her =H, (R {R

IRTGRT «
HCCE.Y - Hp/ CR 1 R

[Heer Heer Hees Hees Hees Hegs )
Heer = 03
Heer = 0354
o~ gl
Hees = {GPf—GPI_?R PCJ
Hces = —fR
~ ~ ~ G 7~
Hees = Vi = [ =B,/ R'®
H "H
cce = —3 Hees
i
T 0%,
Note that # =tc—t; =tc —i;—1;. The measure-

ment Jacobians for auxiliary IMU constraints are computed as:

H ﬁ“ﬁ 03 03 03 03 03><24
AB = =/~
?RLIPL‘J =L 03 03 035 034
[— I 0 0; 05 035 034
H, =
0; Iz 03 03 03 O34
I 0 —lagy 05
H,e— 3 3 3x20

s S~ 1
03 —IGR GV]-‘F?RLI(!)J pIa 03><2()

Note that t; =1, — 14, = 1, _?da — ;d[, is used when com-
puting the Jacobians for the #; . The measurement Jacobians for
auxiliary gyroscope constraints are computed as:

HGB = [ ?’l/i 03 03 03 03 03><24]
Hoe = 1 0; 0]
Hoe = (037 I3 —%& 055 0]

Note that #; =, — la, = Iy —?dg — ?dg is used when com-
puting the Jacobians for the 74,.
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FE. Observability matrix
For the component M5, we have:
Mcp = Hep @5
—H, LR R %[, I, T3 Ty Ts To Ty T T

where:

o G 1
T, = | %,~%,—%,0t - EGg5t2J 7R

r,=-L
I'; = —1;0¢
r,= LGi)\f— i)\[kJIGkﬁ(I)M — @y
Is = | 5p,—5p, |, R®is — ®s
I's = Lpr AijIGkR(Dmn D1
;= | 5B, —5P,, |, R®u> — Dy
Ty = | 5P, —5P,, |, R®yis — By
Ty = | 5B, —5P,, | R®js — Dy
For the component M5, we have:
M5 =H,5Pp
_ PR 05 |
0; L,
{‘1)11 0; 05 @y D5 ©jyyy Piyiz Pini3 q’mm}
Fa Too Ts Tas Tus Tug Tor Tag T

where:

~ ~ G~ 1 G
l-‘al = \‘Gplakcpll - Vllél - E GgétzJ 11R
I, =-1
'y =-Lot

Ly = Ic,fR 51,, Dy — Dy

Lis = R| B, | @15 — @

—_ GRI| I
Ty = IkR p[a D11 — Dy

_ GR|Ia

Fa7 - ],CR\‘ p[aJ (Dian - (I)in22
_ GRl|In

Iy = lkR P;a D3 — D3

~

Ly = IiR IplaJ D14 — Dipa

For the component M4, we have:

M,y = Hy @y
-L 0; 0; 0; 0; 0504 1 l P,
0; I3 0; 0; 03 050

For the component M3, we have:

Mgz = Hgp®3
LS @,
=[FR 0; 0; 0y 0; 03] 0
For the component Mg, we have:
Mge = Hge@c
(I),g D,
= [—13 03 03 03]
0 I

Due to @, =1 and @ = I, we have:

Mce = Hee
M,y = Hyc
Mge = Hge
Mcr = Her

D, in
|

(I)in :|
I
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