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Decoupled Right Invariant Error States for
Consistent Visual-Inertial Navigation

Yulin Yang, Chuchu Chen, Woosik Lee and Guoquan Huang

Abstract—The invariant extended Kalman filter (IEKF) is
proven to preserve the observability property of visual-inertial
navigation systems (VINS) and suitable for consistent estimator
design. However, if features are maintained in the state vector,
the propagation of IEKF will become more computationally
expensive because these features are involved in the covariance
propagation. To address this issue, we propose two novel algo-
rithms which preserve the system consistency by leveraging the
invariant state representation and ensure efficiency by decoupling
features from covariance propagation. The first algorithm com-
bines right invariant error states with first-estimates Jacobian
(FEJ) technique, by decoupling the features from the Lie group
representation and utilizing FEJ for consistent estimation. The
second algorithm is designed specifically for sliding-window filter-
based VINS as it associates the features to an active cloned pose,
instead of the current IMU state, for Lie group representation.
A new pseudo-anchor change algorithm is also proposed to
maintain the features in the state vector longer than the window
span. Both decoupled right- and left-invariant error based VINS
methods are implemented for a complete comparison. Extensive
Monte-Carlo simulations on three simulated trajectories and real
world evaluations on the TUM-VI datasets are provided to verify
our analysis and demonstrate that the proposed algorithms can
achieve improved accuracy than a state-of-art filter-based VINS
algorithm using FEJ.

Index Terms—Visual-Inertial SLAM; Localization; Mapping;
Invariant Extended Kalman Filter

I. INTRODUCTION AND RELATED WORK

DURING the past decades, visual-inertial navigation sys-
tems (VINS) have been widely applied to self-driving

cars, AR/VR and autonomous robots especially in GPS-
denied scenarios [1]. By leveraging a low-cost sensor rig
containing both an IMU and camera, a lightweight, robust
and accurate VINS algorithm [2]–[8] can be deployed to
resource-constrained devices for challenging applications. The
majority of VINS algorithms are either based on filter or
batch optimization. In spite of many great works on batch
optimization-based VINS [2], [3], [7], [9], the filter-based
algorithms [6], [10]–[14] are still extensively used mainly due
to their simplicity and efficiency. It has been investigated that
VINS is not fully observable [15] and has four unobserv-
able directions related to global yaw and global translation.
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The standard extended Kalman filter (std-EKF) based VINS
algorithms suffer from inconsistency issues [5], [15], [16]
caused by overconfidence of state estimates. This is mainly
because certain unobservable directions will erroneously be-
come observable due to the linearization point change when
computing state transition matrix and measurement Jacobians.
Spurious information will be gained along with the unob-
servable directions. In this case, the system uncertainty will
be underestimated and the estimation accuracy will also be
downgraded.

Efforts [5], [6], [11], [15]–[25] have been devoted to tack-
ling the inconsistency problems of VINS through different
methodologies. Based on system observability analysis, Huang
et al. [26] proposed a first-estimates Jacobian (FEJ) algorithm,
which avoids the inconsistent problem by intentionally fixing
the linearization points with initial estimates. FEJ was success-
fully applied to multi-state-constraint Kalman filter (MSCKF)
based VINS systems [5], [14], [27] and achieved state-of-
art performances. However, the estimation performance of
FEJ can be easily hurt due to bad state initialization. Huang
et al. [16] also proposed observability-constrained (OC)-EKF
for consistent estimator design, which enforces the unobserv-
able subspace by manually changing the Jacobians. Hesch et
al. [15] and Sun et al. [12] applied observability constraints
to build robust and accurate VINS algorithms. However, the
Jacobians used in these algorithms do not strictly follow first-
order Taylor series expansion and are not theoretically optimal.

Instead of directly manipulating the linearization points or
Jacobians, Bloesch et al. [6] and Huai et al. [11] proposed
to use robocentric state representations, which keep the IMU
states and the landmarks all in the local IMU frame to miti-
gate the VINS inconsistency. In this formulation, the system
is consistent as it automatically preserves the unobservable
subspaces without any Jacobian manipulations. However, extra
states are required to be kept in the state vector, such as
gravity [11]), which might cause extra unobservable directions.

In recent years, the manifold theory, especially Lie
group [28] representation for robot pose, has been applied
to robot navigation [18], [19], [23], [25], [29], [30], and
shows to improve both estimation consistency and accuracy.
Bonnabel and Barrau et al. [29], [31] first justified and applied
an appropriate group SE3(3) to enforce system observabil-
ity for filter-based simultaneous localization and mapping
(SLAM). Brossard et al. [21] showed that the IMU propagation
with invariant error states can naturally describe the banana-
shaped uncertainty distribution for extended pose represented
in SE2(3). Huai et al. [25] leveraged extended poses to design
a consistent fixed-lag smoother which jointly estimates IMU
poses and features. Wu et al. [19] proposed right invariant
(RI)-VINS which uses right invariant errors for VINS states
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except for IMU biases. They theoretically showed that RI-
VINS can directly satisfy the unobservable properties of VINS
without Jacobian modifications. They further combined RI
and MSCKF as RI-MSCKF, which demonstrates improved
performance compared to std-EKF based MSCKF. Heo et
al. [23] and Tsao et al. [24] also did observability analysis
to show the nice properties of using invariant error states for
algorithm design. They improved MSCKF based VINS with
IMU state perturbed by RI and left invariant (LI) state errors,
respectively. The above works have applied invariant error
states for the VINS algorithms and shown to achieve better
convergence and accuracy. However, the above filter-based
algorithms do not keep any features in the state vector, while
keeping features in the state, even temporally with limited
qualities will substantially improve the system’s accuracy and
robustness for long-term navigation [5]. Also, their works were
compared only with std-EKF based algorithms even though
there are state-of-art and open-sourced VINS algorithms based
on FEJ-EKF [14]. In addition, we find that the features will be
involved in the state covariance propagation in RI-VINS if the
features are associated with the current IMU state for the Lie
group representation. This will lead to computation increases
if more variables (i.e., more features) are included in the state
vectors.

In order to leverage the nice consistent properties of the
invariant VINS but also achieve comparable efficiency when
keeping features in the state for better performance, we
propose two novel algorithms that can decouple the features
from the state covariance propagation while maintaining sys-
tem consistency. One algorithm represents IMU state in Lie
group and the features in R3. “FEJ” technique is applied to
feature states to keep system consistent. The other algorithm
is designed specifically for sliding-window based VINS, as
it decouples the feature state from the current IMU state
and associates it to an active cloned pose from the sliding
window for the Lie group representation. Specifically, the main
contributions of the this work can be listed as:
• We analytically derived right invariant error based VINS

and found that the feature state is involved in the state
covariance propagation if it is associated with the current
IMU state for the Lie group representation.

• We propose decoupled right invariant (DRI)-VINS algo-
rithms that decouple the feature from state covariance
propagation while still keeping the system consistent.

• We perform extensive Monte-Carlo simulations with three
simulated trajectories and different measurement noises
to verify both consistency and accuracy of the proposed
algorithms. Real world evaluations based on TUM-VI
datasets also show improved performances of the pro-
posed algorithms to state-of-art filter-based VINS.

II. VINS WITH RIGHT INVARIANT ERROR STATES

In this section, we introduce the VINS algorithms with
invariant state errors.

A. Definition of Left- And Right-Invariant Errors
If y and ŷ are both n× n matrices within the same matrix

Lie group [28], the right- and left-invariant errors can be
defined as [32]:

δyr = ŷy−1 = (ŷL)(yL)−1, δyl = y−1ŷ = (Ly)−1(Lŷ)

where δyl and δyr denote left- and right-invariant errors,
respectively; L is an arbitrary element of the same Lie group
as y.

B. State Vector
For simplicity, we assume the state vector contains the IMU

navigation state xn, the bias state xb and a single feature Gpf :

x =
(
xn,xb,

Gpf
)

(1)

where xn =
(
G
I R,GpI ,

GvI
)

and xb = (bg,ba); GpI , GvI
and Gpf denote the IMU position, IMU velocity and feature
position in the global frame {G}, respectively; GI R ∈ SO(3)
represents the rotation from IMU frame {I} to {G}; bg
and ba are both in R3 and represent the random walk for
gyroscope and accelerometer, respectively. Following [19],
[21], we define xnf to include xn and Gpf in the Lie group
as SE3(3) [31] as:

xnf , (xn,
Gpf ) =

[
G
I R GpI

GvI
Gpf

03 I3

]
(2)

Note xnf can be perturbed with either left or right invariant
error states. For clarity, we only present right invariant error
based algorithms in this paper and our supplementary materials
[33] cover both cases for readers. By defining x̂ as the estimate
of x and δx =

[
δx>n δx>b δp>f

]>
∈ R18 as the error of the

estimation, we can define � on manifold as:

x = x̂� δx =

(
exp

([
δxn
δpf

])
· x̂nf ,xb + δxb

)
(3)

=



exp(δθI)
G
I R

exp(δθI)
Gp̂I + Jl(δθI)δp

exp(δθI)
Gv̂I + Jl(δθI)δv

b̂g + δbg
b̂a + δba

exp(δθI)
Gp̂f + Jl(δθI)δpf


(4)

where δxn =
[
δθ>I δp> δv>

]>
∈ R9 denotes the right

invariant error states for IMU navigation state xn which
includes the errors of orientation δθI , position δp, and velocity
δv. δxb =

[
δb>g δb>a

]>
∈ R6 denotes the IMU bias error

states including δbg and δba. δpf ∈ R3 represents the feature
error state; exp(·) and Jl(·) are matrix exponential and left
Jacobians defined for Lie group [34], respectively. Note that[
δx>n δp>f

]>
represent the right invariant errors of xnf .

C. State Propagation
The linear acceleration am and angular velocity ωm read-

ings from an IMU are:

am = a + ba + na (5)
ωm = ω + bg + ng (6)

where na and ng are zero-mean Gaussian random noises. The
system dynamic model is thus defined as [35]:
G
I Ṙ = G

I RbIωc, GṗI = GvI ,
Gv̇I = G

I RIa + Gg

ḃg = nwg, ḃa = nwa,
Gṗf = 03×1

(7)

where nwg and nwa are Gaussian noises driving the biases
bg and ba, respectively; Gg = [0 0 − 9.8]> is the gravity;
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b·c denotes a skew-symmetric matrix [35]. By integrating the
IMU measurements between time tk and tk+1, the consecutive
system state xk+1 propagated from xk is derived as:

G
Ik+1

R = G
Ik

R∆Rk (8)

GpIk+1
= GpIk + GvIkδt+ G

Ik
R∆pk +

1

2
Ggδt2 (9)

GvIk+1
= GvIk + G

Ik
R∆vk + Ggδt (10)

bgk+1
= bgk +

∫ tk+1

tk

nwgdt (11)

bak+1
= bak +

∫ tk+1

tk

nwadt (12)

where δt = tk+1 − tk; ∆Rk = exp
(∫ tk+1

tk
Iτωdτ

)
;

∆vk =
∫ tk+1

tk

Ik
Iτ

RIτadτ ; ∆pk =
∫ tk+1

tk

∫ s

tk

Ik
Iτ

RIτadτds. Fol-

lowing [21], the state propagation is reorganized as:

xnfk+1
= ΓkΨ(xnfk)Υk (13)

Γk =

[
I3

1
2
Ggδt2 gδt 03×1

03 I3

]
(14)

Ψ(xnfk) =

[
G
Ik

R GpIk + GvIkδt
GvIk

Gpf

03 I3

]
(15)

Υk =

[
∆Rk ∆pk ∆vk 03×1

03 I3

]
(16)

Hence, the linearized system (detailed derivations can be
found in [33]) from tk to tk+1 is written as:

δxk+1 ' Φk+1,kδxk + Gkndk (17)

Φk+1,k =

Φnn Φnb 09×3

06×9 I6 06×3

03×9 Φfb I3

, Gk =

Gnn 09×6

06 I6δt

Gfn 03×6

 (18)

Φnn =

I3 0 0

0 I3 δtI3
0 0 I3

,Φfb =
[
−bGp̂fcGIk+1

R̂Jr(∆θ̂)δt 03

]

Φnb =

 −GIk+1
R̂Jr(∆θ̂)δt 03

−bGp̂Ik+1
cGIk+1

R̂Jr(∆θ̂)δt+ G
Ik

R̂Ξ4 −GIkR̂Ξ2

−bGv̂Ik+1
cGIk+1

R̂Jr(∆θ̂)δt+ G
Ik

R̂Ξ3 −GIkR̂Ξ1


where Φk+1,k denotes the state transition matrix; Gk is the

measurement noise Jacobian; ndk is discretized IMU noise;
Note that Φfb = Gfn and Φnb = Gnn; ∆θ̂ = log

(
∆R̂k

)
;

log(·) and Jr(·) denote the log matrix operation and right
Jacobians for SO(3) [34]; Ξi, i = 1 . . . 4, are integration
components defined in our previous work ACI2 [35]. With
(13) and (17), we have both mean and covariance propagation
for Kalman filter.

D. Visual Measurements Update

When the camera is exploring the environment, we can track
the point feature and get the corresponding normalized image
pixel measurement as:

z =
[
x
z

y
z

]>
,Cpf =

[
x y z

]>
(19)

Cpf = C
I RI

GR(Gpf − GpI) + CpI (20)

With the definition of error states in (3), we can linearize the
image measurement and compute the Jacobians H , ∂δz

∂δx as:

H =
∂δz

∂δCpf

[
∂δCpf
∂δθI

∂δCpf
∂δp

∂δCpf
∂δv

∂δCpf
∂δbg

∂δCpf
∂δba

∂δCpf
∂δpf

]
= HC

[
03 −CI R̂I

GR̂ 03 03 03
C
I R̂I

GR̂
]

(21)

where HC represents the projection Jacobian. We can then
perform EKF update to get refined state estimates and covari-
ances. Now we have presented the algorithm for RI-VINS.

E. Observability Analysis
Observability indicates whether the system can recover its

initial states with all the measurements. It can also be used
for system consistency analysis [15], [16] and degenerate mo-
tion identification [36]–[41]. Following [15], the observability
matrix for the linearized system is defined as:

O =


O0

O1

...
Ok

 =


H0

H1Φ1,0

...
HkΦk,0

 (22)

Dropping the subscripts k for simplicity, each block row Ok
is computed as:

Ok = HC
C
I R̂I

GR̂
[
M1 −I3 −I3δt M2 M3 I3

]
(23)

where:

M1 =
1

2
bGgcδt2, M3 = G

I0R̂Ξ2 (24)

M2 = bGp̂IkcGIkR̂Jr(∆θ̂)δt− G
I0R̂Ξ4 (25)

It can be easily found that there are still 4 unobservable
directions for RI-VINS, s.t., ON = 0 with unobservable
subspace N:

N =

[
Gg> 01×3 01×9 01×3

03 I3 03×9 I3

]>
(26)

Different from std-EKF based VINS [5], [15], [27], the null
space of the RI-VINS is unrelated to the state vector. Hence,
the system unobservable subspaces will not be affected by
system linearization change. This property makes RI-EKF
automatically avoid inconsistent issues caused by spurious
information inflation to system unobservable directions [15],
[16].

However, the drawback for the RI-VINS is that the feature
is associated with current IMU state xn for the Lie Group
representation and involved in the state covariance propagation
(as Φfb and Gfn shown in (18), which would normally be
0 in std-EKF based VINS [5], [15], [27]). If there are l
features in the state vector, the computation cost of covariance
propagation for std-EKF based VINS is only around O(l) but
can rise to O(l2) for RI-VINS (see complementary materials
[33]). This slows down the system propagation dramatically if
more variables are involved in the state vector and will limit
the application of RI-VINS.

In order to keep the nice property of the right invariant error
states but also consistently incorporate more state variables
(especially features), the most straight-forward solution is to
decouple the feature from the state covariance propagation.
In the following sections, we propose two new algorithms to
achieve this goal, named as decoupled right invariant (DRI)-
VINS.
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III. DRI-FEJ FOR VINS

If the features are decoupled from the Lie group repre-
sentation with the current IMU state and parameterized in
R3 space naively, named DRI-NAIVE, the system becomes
inconsistent because the system unobservable subspaces will
be affected by the feature states. We hence propose DRI-
FEJ to combine DRI and FEJ, which leverages right invariant
errors and performs ”FEJ” to the feature state Gpf to achieve
consistent performance.

A. DRI-NAIVE

If the feature is not associated with the Lie group of the
current IMU state but represented in R3 naively, the � in
manifold is re-defined as:

x = x̂� δx =
(
exp (δxn) x̂n,xb + δxb,

Gpf + δpf
)

(27)

=



exp(δθI)
G
I R

exp(δθI)
Gp̂I + Jl(δθI)δp

exp(δθI)
Gv̂I + Jl(δθI)δv

b̂g + δbg
b̂a + δba
Gp̂f + δpf


(28)

Following similar procedures, the state transition Φk+1,k and
measurement Jacobians are computed as:

Φk+1,k =

Φnn Φnb 09×3

06×9 I6 06×3

03×9 03×6 I3

 (29)

H = HC

[
∂δCpf
∂δθI

∂δCpf
∂δp

∂δCpf
∂δv

∂δCpf
∂δbg

∂δCpf
∂δba

∂δCpf
∂δpf

]
= HC

C
I R̂I

GR̂
[
bGp̂fc −I3 03 03 03 I3

]
(30)

It can be observed that the feature is decoupled from the
state covariance propagation as expected, as Φfb = 03×6.
We then compute the observability matrix O and get the new
unobservable subspace for DRI-NAIVE as:

N =

[
Gg> 01×3 01×9 −(bGp̂fcGg)>

03 I3 03×9 I3

]>
(31)

It shows that, different from RI-VINS of which the unobserv-
able subspace is invariant of state estimates, the unobservable
subspace of DRI-NAIVE VINS can be affected by feature
estimate Gp̂f . That means if we naively decouple the features,
the system will suffer from inconsistency caused by the feature
linearization change. This claim is further verified by Monte-
Carlo simulations in Section V.

B. DRI-FEJ

For tackling this inconsistency issue for DRI-NAIVE, the
most straight forward solution is to perform ”FEJ” technique
when computing the feature state Jacobians, which avoids the
linearization point change. This proposed DRI-FEJ algorithm
will keep the four unobservable directions of VINS by simply
fixing the linearization points of feature states. Unlike the FEJ
based VINS algorithms in [5], [14], which need to perform
”FEJ” to all the IMU states and feature states, the proposed
DRI-FEJ only uses FEJ for the feature states. Therefore, in the
proposed algorithm, the system can always utilize the current
best IMU state estimates for system linearization. The side

effects of bad state initialization can be mitigated and DRI-
FEJ can achieve better accuracy than FEJ (see Section V). In
addition, the invariant error states can also better capture the
uncertainty of the extended pose [21], and benefit the system
performance.

IV. DRI WITH SLIDING WINDOW FOR VINS
DRI-FEJ is a general algorithm for EKF, and we also pro-

pose a DRI specifically for sliding-window based estimators
which are widely used for VINS algorithms. In this section, we
find that the feature can be decoupled from the state covariance
propagation by associating features with an active cloned pose
within the sliding window for Lie group representation. We
further extend RI-MSCKF [19] to keep the features in the
state longer than the sliding window span for better accuracy
and robustness [5]. We also, for the first time, propose a
pseudo-anchor change algorithm, which represents the features
in global frame but changes their associating Lie group pose
which might be marginalized from the sliding window, thus
the features can be kept in the state vector as long as they can
still be tracked actively in current frame.

A. DRI-Sliding Window (SW)
The state vector contains the IMU navigation state xn, the

bias state xb, one feature point Gpf and sliding window states
xc:

x =
(
xn,xb,xc,

Gpf
)

(32)

xc =
(
G
Ic0R,

GpIc0 ,
G
Ic1R,

GpIc1
)

(33)

Note that we only consider two poses in the sliding window
for simplicity. Different from DRI-FEJ, we associate the
feature Gpf with the first clone pose {Ic0} for the Lie group
representation. Thus, the new error states δx ∈ R30 can be
defined as:

δx =
[
δx>n δx>b δx>c δp>f

]>
(34)

δxc =
[
δθ>Ic0 δp>Ic0 δθ>Ic1 δp>Ic1

]>
(35)

where δxc represents the errors states for sliding window states
xc. Therefore, the new � for DRI-SW is defined as:

x = x̂� δx =



exp(δθI)
G
I R

exp(δθI)
Gp̂I + Jl(δθI)δp

exp(δθI)
Gv̂I + Jl(δθI)δv

b̂g + δbg
b̂a + δba

exp(δθIc0)GIc0R

exp(δθIc0)Gp̂Ic0 + Jl(δθIc0)δpIc0
exp(δθIc1)GIc1R

exp(δθIc1)Gp̂Ic1 + Jl(δθIc1)δpIc1
exp(δθIc0)Gp̂f + Jl(δθIc0)δpf



(36)

B. State Transition Matrix And Measurement Jacobians
The state transition matrix for DRI-SW is derived as:

Φk+1,k =


Φnn Φnb 09×12 09×3

06×9 I6 06×12 06×3

012×9 012×6 I12 012×3

03×9 03×6 03×12 I3

 (37)
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Clearly, the feature is decoupled from the IMU state covari-
ance propagation with Φfb = 03×6 (see Eq. (18)). If feature
is observed at a cloned pose {Ici}, i = {0, 1}, the frame
transformation for the feature is:

Cpf = C
I RIci

G R(Gpf − GpIci) + CpI (38)

Hence, we can recompute the Jacobians with feature associated
with {Ic0} for the Lie group representation as:

∂δCpf
∂δθIc0

= −CI R̂Ici
G R̂bGp̂fc,

∂δCpf
∂δθIc1

= −∂δ
Cpf

∂δθIc0
∂δCpf
∂δpIci

= −CI R̂Ici
G R̂,

∂δCpf
∂δpf

= C
I R̂Ici

G R̂

C. Pseudo-Anchor Change

Different from frame anchor change in [14] which repre-
sents the features in the local sensor frame {I} instead of
the global frame {G}, the proposed pseudo-anchor change
refers to changing the associated Lie group representation for
the features in global frame {G}. In order to keep the long-
tracked features in the state vector even when the associated
cloned pose is marginalized from the sliding window, we can
perform pseudo-anchor change, that is to “anchor” the feature
to another active cloned pose in the sliding window for the
Lie group representation.

Since the feature state estimate Gp̂f remains the same, we
only need to modify the covariance of the feature after pseudo-
anchor change. If the associated pose Ic0 of the feature is
about to be marginalized from the sliding window, we then
need to associate the feature with the pose Ic1 for the Lie
group representation. If we define δpfi as the error states for
Gpf when it is associated with cloned pose {Ici}, we have
the following perturbations:

Gpf = exp(δθIc0)Gp̂f + Jl(δθIc0)δpf0 (39)
Gpf = exp(δθIc1)Gp̂f + Jl(δθIc1)δpf1 (40)

Then the feature’s new error state δpf1 is written as:

δpf1 = −bGp̂fcδθIc0 + bGp̂fcδθIc1 + δpf0 (41)

We then leverage EKF update to get the new state covariance
with (41). The proposed pseudo-anchor change algorithm will
not affect the system’s unobservable property. More detailed
discussion can be found in supplementary materials [33].

V. MONTE-CARLO SIMULATIONS

In order to verify our proposed algorithms, we leverage the
simulator in [14], [42] to simulate inertial readings and camera
pixel measurements with 3 different trajectories (sim rpng,
sine 3d, and udel gore, shown in Fig. 1). These 3 trajectories
can cover most motion profiles that might appear in real world

TABLE I: Monte-Carlo Simulation Parameters

Parameter Value Parameter Value

IMU Freq. (hz) 400 Max Cam Pts/Frame 100
Cam Freq. (hz) 10 Max Feats 40

Gyro White Noise 1.6968e-04 Gyro Random Walk 1.9393e-04
Accel. White Noise 2.0000e-03 Accel. Random Walk 3.0000e-03

Max. Clone Size 11 Pt Feat. Rep. GLOBAL

TABLE II: Average absolute trajectory error (ATE) for 50
Monte-Carlo runs on 3 simulated trajectories (sim rpng,
sine 3d and udel gore) with 1- and 3-pixel camera noises.

Noise Algorithms sim rpng
(degree/m)

sine 3d
(degree/m)

udel gore
(degree/m)

Average
(degree/m)

dli fej [33] 0.268 / 0.155 0.538 / 0.127 0.351 / 0.160 0.386 / 0.148
dri fej 0.268 / 0.156 0.538 / 0.127 0.358 / 0.160 0.388 / 0.148
dri sw 0.267 / 0.157 0.539 / 0.127 0.382 / 0.159 0.396 / 0.148

1 pixel fej [14] 0.368 / 0.207 0.575 / 0.130 0.389 / 0.163 0.444 / 0.167
dli naive 0.517 / 0.291 1.855 / 0.238 0.752 / 0.192 1.042 / 0.240
dri naive 0.553 / 0.305 1.985 / 0.238 0.769 / 0.190 1.102 / 0.244

std 0.514 / 0.288 1.863 / 0.236 0.759 / 0.189 1.045 / 0.237
dli fej [33] 0.567 / 0.349 1.369 / 0.303 1.039 / 0.421 0.991 / 0.357

dri fej 0.574 / 0.353 1.409 / 0.305 0.995 / 0.418 0.993 / 0.359
dri sw 0.507 / 0.328 1.369 / 0.302 0.860 / 0.392 0.912 / 0.341

3 pixels fej [14] 0.639 / 0.384 1.417 / 0.305 1.064 / 0.420 1.040 / 0.370
dli naive 0.859 / 0.506 4.271 / 0.541 1.724 / 0.484 2.285 / 0.510
dri naive 0.855 / 0.496 4.255 / 0.521 1.654 / 0.468 2.255 / 0.495

std 0.875 / 0.509 4.269 / 0.525 1.691 / 0.472 2.278 / 0.502

TABLE III: Average normalized estimation error-squared
(NEES) for 50 Monte-Carlo runs of sim rpng trajectory with
1- and 3-pixel camera noises.

Algorithm NEES with 1-Pixel Noise
(Orientation / Position)

NEES with 3-Pixel Noise
(Orientation / Position)

dli fej [33] 2.317 / 2.200 2.736 / 3.092
dri fej 2.317 / 2.956 2.750 / 3.671
dri sw 2.302 / 2.994 2.559 / 3.545
fej [14] 2.774 / 2.587 3.122 / 3.363

dli naive 32.693 / 25.467 33.053 / 22.901
dri naive 37.046 / 3.596 32.720 / 5.253

std 32.209 / 24.674 34.155 / 22.546

environments. The basic configuration for the simulation is
listed in Table I.

We leverage OpenVINS [14] to build our decoupled in-
variant error states based VINS system. In the system, the
visual features are classified into two categories: 1) MSCKF
features which are tracked within the sliding window and
then marginalized; 2) SLAM features which are kept in the
state vector until we lose tracks of them. We implement
DRI-FEJ (dri fej) and DRI-SW (dri sw) introduced on Sec-
tion III and IV. For completeness, we also implement decou-
pled left invariant(DLI)-FEJ (dli fej) algorithm and detailed
derivations can be found in supplementary materials [33].
In addition, the DRI-NAIVE (dri naive) and DLI-NAIVE
(dli naive) algorithms, which both decouple features from the
Lie group of the current IMU state and represent features in
R3 naively, are also implemented and evaluated. For Monte-
Carlo simulations, we perform online spatial-temporal and
camera intrinsic calibration. We also compare our results with
VINS based on std-EKF (std) and state-of-art FEJ-EKF (fej)
both implemented in [14]. In order to test the robustness of
the proposed algorithm to noises, we run 50 Monte-Carlo
runs with all the above mentioned algorithms using 1-pixel
and 3-pixel camera measurement noises. Root mean square
error (RMSE), absolute trajectory error (ATE) and relative
pose error (RPE) are used for trajectory accuracy evaluation
while normalized estimation error squared (NEES) for system
consistency evaluation.

The overall results are shown in Table II and III. From the
results, we can see the dri naive and dli naive (similar to std)
are inconsistent as their NEES values grow unbounded (see
Table III and Fig. 3). Their performances are much worse
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Fig. 1: Simulated trajectories. Left: sim rpng (around 659m), middle: sine 3d (around 697m) and right: udel gore (around
225m). Note that the green triangular denotes the start of the trajectory while the red circle indicates the end.

Fig. 2: Average RMSE and NEES for 50 Monte-Carlo runs
of algorithms (dli fej, dri fej, dri sw, and fej) with sim rpng
trajectory with 1-pixel and 3-pixel noises, receptively. The pro-
posed dli fej, dri fej, and dri sw achieve smaller RMSE than
fej. As noise increases, all the algorithms remain consistent
with NEES near 3.

than those consistent estimators we proposed, like dri fej,
dri sw and dli fej, of which the NEES values are around or
smaller than 3, for both orientation and position estimates.
No matter using 1-pixel or 3-pixel noises, all the proposed
invariant error based algorithms (dri fej, dri sw and dli fej)
can output smaller ATE and RMSE than fej (see Fig. 2 for
sim rpng and Table II for all three trajectories). Note that when
the noise is increased from 1 pixel to 3 pixels, the performance
of dri fei and dli fej is approaching fej while dri sw is
still performing the best. This is because dri sw always uses
the best linearization points for the system Jacobians, while

Fig. 3: Average RMSE and NEES for 50 Monte-Carlo runs
of algorithms (dri naive, dli naive, and std) with sim rpng
trajectory at 1-pixel noise. dri naive and dli naive are incon-
sistent because the unobservable subspace can be affected by
state estimate changes.

dri fej, dli fej and fej, which all need to perform FEJ to some
states, will eventually affected by the bad state initialization
caused by larger noises.

VI. REAL-WORLD EXPERIMENTS

We further evaluate our proposed algorithms with real-
world TUM-VI benchmark [43], which provides gray-scale
stereo images at 20Hz, a time-synchronized 200Hz IMU and
accurate pose ground-truth from a motion capture system. We
run each of the above mentioned algorithms (dli fej, dri fej,
dri sw, fej, dli naive, dri naive and std) 5 times on TUM-
VI Room sequences (6 datasets in total). For each run, we
keep 11 clones and track at most 50 SLAM features in the
state vector. Some visual features are treated as MSCKF
features and marginalized when we lose tracking of them. We
also perform spatial-temporal and camera intrinsic calibration
during evaluations. The results for all these algorithms can be
seen in Fig. 4 for average RPE and Table IV for average ATE.

It can be seen that the naive DRI algorithms (dri naive and
dli naive) perform similar to std but much worse than those
consistent algorithms (dli fej, dri fej, dri sw and fej). This
verifies that naively decoupling the features from the Lie group
causes system to become inconsistent and degrades VINS
performances, while our proposed algorithms (dli fej, dri fej
and dri sw) can achieve better or comparable accuracy to the
state-of-art fej-based algorithm [14], especially for orientation
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Fig. 4: Average RPE (orientation and position) plots for 5 runs with different algorithms on TUV-VI datasets Room sequences.
In both monocular and stereo cases, the proposed dri fej and dri sw are better than fej.

.
TABLE IV: Average trajectory (orientation/position) error (ATE) for 5 runs with different algorithms on TUM-VI datasets
Room sequences. The proposed dri fej and dri sw demonstrate improved accuracy than fej while dli fej is similar to fej.

Camera Algorithm dataset-room1
(degree/m)

dataset-room2
(degree/m)

dataset-room3
(degree/m)

dataset-room4
(degree/m)

dataset-room5
(degree/m)

dataset-room6
(degree/m)

Average
(degree/m)

dli fej [33] 2.017 / 0.127 5.331 / 0.235 3.667 / 0.142 1.857 / 0.440 4.207 / 0.283 1.868 / 0.137 3.158 / 0.227
dri fej 1.860 / 0.147 2.654 / 0.199 1.998 / 0.114 2.330 / 0.194 2.328 / 0.201 3.084 / 0.262 2.376 / 0.186
dri sw 1.557 / 0.143 1.619 / 0.198 1.750 / 0.121 1.576 / 0.197 1.306 / 0.211 1.377 / 0.230 1.531 / 0.183

Mono fej [14] 2.496 / 0.122 4.435 / 0.217 2.242 / 0.117 1.513 / 0.162 1.549 / 0.236 3.939 / 0.126 2.696 / 0.163
dli naive 4.070 / 0.153 13.933 / 0.314 7.084 / 0.185 2.770 / 0.226 2.716 / 0.193 6.228 / 0.272 6.134 / 0.224
dri naive 3.391 / 0.155 14.471 / 0.319 7.055 / 0.169 3.114 / 0.213 1.835 / 0.227 5.763 / 0.210 5.938 / 0.215

std 3.428 / 0.156 14.893 / 0.323 6.493 / 0.152 2.556 / 0.138 3.265 / 0.177 6.204 / 0.232 6.140 / 0.197

dli fej [33] 1.480 / 0.063 9.903 / 0.229 1.775 / 0.083 1.133 / 0.059 2.162 / 0.093 0.732 / 0.057 2.864 / 0.097
dri fej 1.273 / 0.058 1.397 / 0.094 1.273 / 0.077 0.861 / 0.039 1.411 / 0.089 1.460 / 0.081 1.279 / 0.073
dri sw 1.596 / 0.061 1.279 / 0.103 1.260 / 0.082 0.916 / 0.046 1.683 / 0.092 2.465 / 0.078 1.533 / 0.077

Stereo fej [14] 2.519 / 0.071 9.378 / 0.194 1.749 / 0.076 1.103 / 0.065 1.812 / 0.098 1.578 / 0.075 3.023 / 0.097
dli naive 2.361 / 0.066 14.554 / 0.267 6.447 / 0.139 3.828 / 0.083 2.547 / 0.119 7.855 / 0.139 6.265 / 0.135
dri naive 3.479 / 0.079 14.482 / 0.267 7.268 / 0.146 3.188 / 0.063 1.622 / 0.108 6.130 / 0.102 6.028 / 0.127

std 2.402 / 0.069 15.425 / 0.277 7.559 / 0.147 3.117 / 0.068 2.168 / 0.090 7.186 / 0.121 6.310 / 0.129

estimation. From Table IV, it can be seen that dri fej
and dri sw generate smaller orientation ATE and comparable
position ATE than fej for monocular case, and they perform
better than fej both in orientation and position ATE for stereo
cases. The advantages of dri fej and dri sw can be observed
more clearly from the RPE plots (Fig. 4), from which it can be
seen that both orientation and position errors are improved.

For both monocular and stereo cases, the proposed dri fej
and dri sw have similar performances. But they achieve better
accuracy than dli fej and fej, this might be due to the fact that
we only need to perform FEJ to the feature states in dri fej
or no FEJ is needed for dri sw. In the meanwhile, dli fej and
fej both need to perform FEJ to all the sliding window states
and feature states (see supplementary materials [33]), which
makes them more vulnerable to bad state initialization caused
by larger noises or bad feature triangulation.

VII. CONCLUSIONS AND FUTURE WORK

In this paper we investigate the observability of VINS
built on right invariant error states and find that invariant
EKF based VINS can automatically satisfy the system un-
observable properties. However, compared with the standard
VINS algorithms, if the features are maintained in the state
vector, the system suffers from increased computation costs

because these feature states are involved in the covariance
propagation. Instead of naively decoupling the feature state
from the Lie group, we proposed two algorithms to decou-
ple the feature from state propagation consistently. The first
algorithm represents the feature in R3 and performs FEJ
only to feature states for consistent performance. The second
algorithm is designed specifically for sliding-window based
VINS, which associates the feature states with a cloned pose
in the sliding window, instead of the current IMU state, for the
Lie group representation. We propose a pseudo-anchor change
algorithm to maintain the feature in the state vector longer
than window span. We implement both right- and left-invariant
error based algorithms for a complete comparison. In Monte-
Carlo simulations, we evaluate three trajectories with different
measurement noises and show our proposed algorithms remain
consistent and perform better than a state-of-art filter-based
VINS algorithm using FEJ. Real world evaluations on the
TUM-VI datasets with both monocular and stereo cameras
are also provided to further verify our proposed algorithms.
In the future, we will apply observability constrained (OC)-
EKF to design DRI-OC algorithm. We will also investigate
the performances of DRI-VINS algorithms under degenerate
motions [40], [41].
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