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Abstract—In this paper, we design a versatile multi-sensor
aided inertial navigation system (MINS) that can efficiently
fuse multi-modal measurements of IMU, camera, wheel encoder,
GPS, and 3D LiDAR along with online spatiotemporal sensor
calibration. Building upon our prior work [1]-[3], in this work
we primarily focus on efficient LiDAR integration in a sliding-
window filtering fashion. As each 3D LiDAR scan contains a
large volume of 3D points which poses great challenges for
real-time performance, we advocate using plane patches, which
contain the environmental structural information, extracted
from the sparse LiDAR point cloud to update/calibrate the
system efficiently. The proposed LiDAR plane patch processing
algorithm (including extraction, data association, and update)
is shown to be efficient and consistent. Both Extensive Monte-
Carlo simulations and real-world datasets with large-scale
urban driving scenarios have been used to verify the accuracy
and consistency of the proposed MINS algorithm.

I. INTRODUCTION

Online localization is a fundamental prerequisite of au-
tonomous vehicles. Many algorithms have been developed
thus far to achieve a high-precision consistent 3D localization
using different sensors. Multi-sensor fusion is often used to
achieve this goal for a number of reasons including more
reliable data outcomes, more coverage, applicability, and
lower equipment cost though at a higher computation cost.
Among all possible navigation sensors, IMU, camera, wheel
encoder, GPS, and 3D LiDAR are appealing because of their
sufficient information for 3D motion estimation and good
accessibility to commercial products. While it appears to be
straightforward in principle to fuse all of these sensors in
order to achieve good localization performance, few work
has shown to fuse sensors more than three types due to
their different characteristics, increasing computation, asyn-
chronicity, and calibration issues. Moreover, accurate online
multi-sensor calibration is essential for optimal sensor fusion
as it may change over time during navigation. As such, in
this work, we develop an efficient multi-sensor aided inertial
navigation system, MINS, an INS aided by multi-modal
sensors including camera, wheel encoder, GPS, and 3D
LiDAR with the online calibration of all involving sensors
while taking into account their asynchronous nature, and
achieving robust accurate real-time localization performance.

When fusing these multi-modal sensors, LiDAR integra-
tion cannot be overemphasized due to its large information
carried by the point clouds. Since 3D LiDAR sensors can
provide more than two million points per second (e.g., HDL-
64E [4]), naive fusion of all these data points likely may not
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Fig. 1: The proposed MINS working in simulations. The green represent the
plane patches extracted from the LiDAR point cloud, the red are the merged
plane patches, and the yellow are the patches used to update the estimator.
Green and light blue paths are the estimated and ground truth trajectories,
respectively.

be real-time. Unlike visual measurements, finding associated
points between different LiDAR scans is hard because there
might be no points hitting exactly same physical locations.
We thus advocate to use plane patches, which contain the
most dominant structural information of the point clouds and
are convenient for robust data association, extracted from
LiDAR point clouds to update the states and calibrate the
spatiotemporal parameters between LiDAR and IMU. In par-
ticular, based on our prior work [1]-[3], we develop MINS,
an real-time, consistent, tightly-coupled, multi-sensor aided
INS estimator with efficient LiDAR plane patch tracking,
while performing online spatiotemporal calibration between
all the sensors. Specifically, the main contributions of this
work include:

o We design MINS, a general real-time MSCKF [5] -
based multi-sensor aided INS estimator that optimally
and efficiently fuses measurements from IMU, camera,
wheel encoders, GPS, and 3D LiDAR.

o We develop an efficient LIDAR feature tracking algo-
rithm to extract, merge, and track plane patches with
proper uncertainty modeling from 3D LiDAR point
clouds. These plane patches are leveraged for real-time
MSCKEF update with online calibration.

« We evaluate the proposed MINS extensively in realis-
tic simulations, analyzing detailed LiDAR processing
times, calibration convergence, and estimator consis-
tency. The proposed method is also validated on large-
scale urban driving datasets.

II. RELATED WORK

The MSF-EKEF [6] is among the first work to fuse generic
relative and absolute measurements from IMU, camera, GPS,



and pressure sensor with online spatial extrinsic calibration.
The whole processing time was bounded by a few hundred
milliseconds. Hausman et al. [7] also fused IMU, cam-
era, GPS, and ultra-wideband (UWB) measurements with
extrinsic calibration within the EKF framework. However,
both works can only handle a relatively small size of
measurements and cannot address the temporal calibration
between the sensors. Shen et al. [8] used the UKF to integrate
IMU, camera, GPS, 2D LiDAR, pressure altimeter, and
magnetometer without calibrating the sensor parameters and
analyzing the processing times, while their recent VINS-
Fusion [9] employs a loosely-coupled graph formulation
to fuse IMU, camera, GPS, magnetometer, and barometer.
Suhr et al. [10] fused IMU, camera, GPS, wheel along
with symbolic road markings map based on a particle filter,
while Meng et al. [1 1] fused IMU, GPS, Distance-Measuring
Instruments (DMI), and LiDAR within the UKF framework.
All these methods assumed known perfect calibration and
have not studied computational complexity analysis.

Recently, there are research efforts primarily fusing IMU,
LiDAR and camera with online calibration. For example, our
prior work, LIC-Fusion 1.0 [12] and 2.0 [13] used planes
extracted from LiDAR point clouds with online calibration.
However, the sensors considered in that work do not include
wheel encoders and GPS, and are limited to show its real-
time performance through 16 channel LiDAR at 10 Hz with
a smaller number of planes used for update. Our recent
work [1] fused IMU, camera, and GPS with spatiotemporal
calibration, [2], [14] combined IMU, camera, and wheel
encoders with spatiotemporal calibration and wheel intrinsic
calibration, while [15] fused IMU, Wheel, 2D LiDAR, and
pre-built 2D LiDAR map within the MSCKF framework with
online calibration. The summary of multi-sensor calibration
algorithms is shown in Table I.

While rich literature exists on LiDAR processing, we only
focus on the SLAM methods that integrate 3D LiDAR with
other sensors in real-time. In particular, Xu et al. [16] used
information filter to take advantage of not inverting large
measurement covariance and fused IMU and LiDAR, the
authors of [17]-[19] extracted LOAM [20] features from
LiDAR measurements and fused with other sensors, while
Zhang et al. [21] introduced a fast plane segmentation and
map refinement algorithm that can save computation time
and improve map quality. Pathak et al. [22] extracted planes
from incoming point clouds and found correspondence effi-
ciently leading to improved efficiency. Shan et al. [23] fused
IMU with LiDAR in a graph formulation, maintaining only
local LiDAR scans within a sliding window to ensure real-
time performance of the system, and Maddern et al. [24]
fused the stereo visual information and LiDAR point cloud
within the camera field-of-view to improve image disparity
estimation. While significant research efforts recently have
also focused on deep learning [25]-[28], it is unclear how
efficient and generalizable these data-driven approaches are.

III. MSCKF-BASED MULTI-SENSOR AIDED INS

Before introducing our LiDAR integration method, we
present the MSCKF-based multi-sensor aided INS (MINS)
fusing IMU, camera, GPS, and wheel encoder measurements

TABLE I: Sensor usage/calibration comparison of multi-sensor systems.

Systems IMU Cam GPS Wheel LiDAR Other
MINS 0/0  0/0 0/0 0/0 O/0
[6] 0/0 0/0 0/0 / / Press
[7] 0/0 0/0 0/0 / / UWB
[8] o/ o/ o/ / o/ Press,Mag
[9] o/ o/ O/ / / Baro,Mag
[10] o/ O/ o/ o/ / Map
[11] o/ / o/ / o/ DMI
[12],[13] O/O  O/O / / 0/0
[2], [14] 0/0  0/0 0/0 / /
[1] 0/0  0/0 / 0/0 /
[15] 0/0 / / 0/0 0/0 Map

based on our prior work [1]-[3]. Specifically, at time ty,
the state vector xj, consists of the current inertial state xj,
and n historical IMU pose clones x¢, captured at camera
measurement times in the global frame {G}:

T
xi = [x], %] M
- T
xi, = [¢a" “p], “vi, by b,] @)
-
X0, = [gﬂ(f Gp;rkil gcfan Gp}'k n} (3)

where gfcj is the JPL unit quaternion [29] corresponding to
the rotation R from {G} to IMU frame {I}, “p;, and
Gy, are the position and velocity of {I} in {G}, and b,
and b, are the biases of the gyroscope and accelerometer. We
define x = xH X, where x is the true state, X is its estimate,
X is the error state, and the operation HH which maps the
error state vector to its corresponding manifold [30].

A. IMU Kinematic Model

The state is propagated forward in time using the IMU lin-
ear acceleration a,, and angular velocity w,, measurements:

am:a—i—éRg—i—ba—&—na, Wn =w+by+n, (4)

where a and w are the true local acceleration and angular
velocity, g ~ [0 0 9.81]" is the global gravity, and n,
and n, are zero mean Gaussian noises. We propagate the
state estimate and covariance from time fj to tx4; based

on the standard inertial kinematic model f(-) [29] under the
assumption of zero noise:
)A(k:+1\k = f(kk|k,am7wm,070) (5)

Piiije = ®(test, tr) P ®(thsr, tr) T + Qi (6)

where x,;, denotes the estimate at time t, formed by
processing the measurements up to time t;, and ® and Q
are the state transition matrix and discrete noise covariance.

B. Camera Measurement Model

Sparse corner features are detected and tracked over a
window of images associated with the cloned frames xc, .
The resulting bearing measurements, zj, are given by:

z, = II(“*py) + ny, (7
“pr=FRER(“ps - pr) + “pr 3)
where II ([z y 2]7) = [Z gf is the perspective pro-

jection, “p ¢ is the 3D point feature, and {?R7Cp1} are
the camera to IMU extrinsic transformation. Stacking all



measurements corresponding to a single feature and perform-
ing linear marginalization of the feature’s position (via the
nullspace projection) results in a residual [5]:

7o, = H,, %), + 1y, )
This then can be directly used in EKF update without storing

features in the state, leading to substantial computational
savings and bounding the state size.

C. Wheel Measurement Model

Instead of adding clones to the state every time when
the wheel encoder reading comes in, as in [!], we integrate
the measurement to get the relative pose measurement be-
tween two clone times in 2D (rotation g’“ *10 and translation
Okdg, +1)» which does not increase the state vector. With
that, we define the following relative transformation between
the 6DOF IMU clone states leveraging the wheel-IMU
extrinsics {¢R,“p;} as:

O;\-+19 _ eTLOg(ORIk+1R1kRTORT) (
O dok+1 - A(Ole R( p1k+1+ Ik+1RT]pO 7Gp1k) +Op1)

where A = [e; GQ]T, e; is the ¢-th standard unit basis vector,
and Log(-) is the SO(3) matrix logarithm function [31].

10)

D. GPS Measurement Model

Besides the visual/wheel measurement update, whenever a
new GPS measurement in the ENU frame {E} is available,
we use it to update the state as in [2]. In particular, the GPS
measurement “pg,,, at timestep k is:

= EpG + gRGpgpe +ng, (1)
Gpgpsk - pI;C + RTngps (12)

where 'pg,s is the GPS-IMU extrinsics, {ER, “pg} is the
transformation between reference frames { £’} and {G}, and
ng, is a white Gaussian noise. Due to the asynchronicity
of the sensor, the GPS measurement time does not exactly
match with the cloned times, thus we use linear interpolation
[32] of the two bounding IMU poses to compute the IMU
pose at the GPS measurement time.

_E
Zg), = DPgps,

E. Online Spatiotemporal Calibration

While we have briefly introduced different sensor inte-
gration models to estimate the state (1), we further extend
our state to include the sensor intrinsics, extrinsics and time
offsets among the sensors, and thus, a full calibration can be
performed. We omit these details, while readers who are in-
terested can refer to [33] for IMU-camera calibration, [2] for
IMU-wheel calibration, and [1] for IMU-GPS calibration.

IV. EFFICIENT LIDAR MEASUREMENT UPDATE

There are two major hardships in using LiDAR measure-
ments: real-time processing and data association. As a 3D
LiDAR sensor provides a large amount of data points, it is
almost impossible to track all the points in real-time. Unlike
the camera measurements, finding point correspondences
between different scans is very challenging because the
points typically do not represent the same physical locations.
To address these issues, we efficiently extract plane patches
from the point cloud, and as they contain dominant structural
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Fig. 2: Plane extraction from the point cloud (left) and plane merger (right)

information, we then can effectively track them over scans.
To describe a plane patch (pp), we use both the center point
p and Hesse normal n of this plane, modeled as a Gaussian:

wetoo. [} (9

where * is the estimated value. Leveraging MSCKF and pp
representation, we are able to update the state (1) efficiently
using all the LiDAR measurements collected in a local
window.

In the following, we explain in detail the proposed meth-
ods to extract pps from the LiDAR point cloud, merge pps,
find data association, and perform update/calibration.

13)

A. Plane Patch Extraction

When a new LiDAR scan comes in, we sparsely select
points and find the neighboring points for each selected point
to build a local point cloud P;, i € {1,2,--- ,n} [see green
and blue points in Fig. 2 (left)]. We utilize kd-tree to quickly
find the neighboring points. Once we have P;, we leverage
the method of [34] to fast extract pp, and further extend
the method to compute the noise covariance of the extracted
plane patches. We first express the consisting points locally,
by subtracting the center point of the cloud p.:

Ly
Zj
233j$j ijyj E:Eij
Pc :ij/ﬂ% V= | Xy;z;  Myjy; Xyjzi | (15)
j Yyxy XYziy;  Xzizj

where W is the corresponding covariance of the point cloud
distribution (scaled by m).

Now, a plane can be extracted from this point cloud
parameterized as (by normalizing along z-component):

ar+by+d=—=z (16)

Note this expression can be singular when the z-component
of the plane normal is close to zero, while this issue can
be easily resolved by choosing different normalization axis.
Then we can solve the following linear least-squares:

oy 1 —z1

T2 Y2 1 a —Z9
) b| = (17)

d
Tm Ym 1 —Zm
which has the following unique solution:

a = (Yy;z; x Sxjy; — Nwjz; x Sy;y;) /D (18)
b= (Exjyj X El‘ij — ijitj X Eyjzj)/D (19)



d=0 (20)
D = Zl‘jl‘j X Eyjyj — ijyj X Zl‘jyj (21)
Then the plane normal n, := [a b 1] can be computed. Note

that the computed plane passes the origin because d = 0, thus
the center point of the cloud p. also becomes the center of
the pp extracted. In order to avoid extracting pp from a non-
planar surface or ill-conditioned, we check the average point
to plane distance and the size of n. before being normalized
to discard if they do not pass thresholds.

It is straightforward to track the plane uncertainty based
on the raw point measurement noise (i.e., P; = Py true +

[Ez] = ZHJ(p] — Ilj) = Zijj — ZH]‘n]‘ (22)
J J J

Thatis, Q. := 3, H; QjHjT becomes the covariance matrix
of (22) where H; is the linear function for p;. Note
that there are more robust ways to solve this problem with
higher computation costs, such as eigenvalue decomposition.
However, the computation speed is vital thus we chose to use
the proposed method as the solution can be instantaneously
computed from (15).

We register this new pp = {p¢,n.} within a new point
cloud by assigning the center point p. as the position of
the point and n. as the additional information to the point.
Note that local point clouds P; consisting of each pp are also
tracked for later merger step (IV-B). Plane patch point cloud
(pppc) is the name of the new point cloud to distinguish it
from the LiDAR point cloud. By treating a pp as a point and
building pppc, we can conveniently utilize kd-tree again to
search the neighboring pps from a selected pp.

B. Plane Patch Merging

There are practical reasons we need to merge the extracted
pps. If the LiDAR is in a structured environment, especially
near a large wall, many of the pps represent the same plane,
which is redundant. This redundancy cannot be ignored
because it can significantly increase computation, especially
when having the same plane from several pppcs. Also, the
more points are used to extract the pp the more accurate
and consistent it can be, if the points are on the same plane.
Therefore we try to merge the pps that are on the same plane
after extracting it from the LiDAR point cloud.

To that end, we first sparsely select pps from pppc and
find each neighboring pps using kd-tree. Once the neigh-
boring pps are found, we iteratively test the “same plane
hypothesis” by checking the Mahalanobis-distance of the
following residual between the selected pp, = {n,, ps} and
each neighboring pp,, = {n,, p,}:

n; —n
ry, = y " 23
|:n;r(ps - pn):l ( )
Specifically, we compute:
y=ra(HQH] +H,Q.H,) 'r;,  (24)

where H, and H,, are the Jacobian matrix respect to each
noise of pp, and pp,,, respectively. v is compared against
a threshold given by the 95 % of the x? distribution. The

I k,s ;
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Fig. 3: Selection of LiDAR measurements for the update. {/} and {L}
indicate the historical IMU poses and LiDAR frames at measurement time,
respectively. In this example, the LIDAR measurement at ¢, and £;41 are
collected for the update, while at ¢;,_; is not because the IMU poses cannot
bound the measurement.

physical meaning of the first raw of the residual (23) is the
parallelism of the planes’ normal, and the second row is
the point to plane distance. After testing all the pp,,, the
original LiDAR points of the pp,, passed the test and pp, are
collected without duplication, a new plane patch is created
from the collected LiDAR point cloud, and the used pp, and
pp,, are removed from the cloud. Fig. 2 (right) shows how
the merging between the patches is processed for a single
pp, case. This operation is repeated until all the pp.s are
processed, and the whole merging step can be repeated a
few times depending on the structure of the environment.

C. Data Association

Unlike the previous steps that all the operations were done
within the same reference frame, pps have to be transformed
frame to frame during the data association/update process
which requires the state information. However, due to the
asynchronicity among the sensors, our state does not have
an IMU pose at exact LIDAR measurement time to express
the measurement. We use the linear interpolation [32] of the
bounding clones to express the IMU pose at the measurement
time, leading to substantial computational savings compare
to adding clones to the state every time LiDAR measurement
comes in. Thus we first collect all the pppcs that can find
the bounding IMU poses for further steps, which is visually
illustrated in Fig. 3.

Assuming that “rpppc, which is measured in LiDAR
frame {L} at ¢, is the oldest pppc among the collected ones,
we want to find the association of “*pp, € Frpppc. For
each collected pppc, we use kd-tree to find the closest pp to
Lkppi, and check the residual between them. The residual
for testing “*pp, and Lk‘“ppj € Lrtipppe, for example, can
be described as:

Litipy. _ LhtiRLiy,.
n; — ;- R**n;

Ly T (L LitipLiy. Ly )
+in, ( “1pr, + ' RErp; +1p;)

Note that wunlike Eq. (23), transformation terms
{i’;“R,LHlpL,ﬂ} are needed in Eq. (25) to match
the reference frames. The transformation terms can be
computed using linear interpolation of the bounding poses:

MR =IREVRERTIRT (26)

Ly I
"PLy— IRER(Cpr+ "R p—Cpr,—aR 'pr) (27)

r, =

(25)



R = Exp(ALog(¢ ‘R “RT))¢ R 28)
prk = (1 - )‘)prk,s + )‘prk,c (29)
A= (tp +Ttp —trs)/(the —trs) (30)

where Exp(-) is the SO(3) matrix exponential function [31],
{!R,’p.} is the LiDAR-IMU extrinsic, 't; is the time
offset, and ¢y, , and ¢, . are the bounding IMU pose times of
measurement time ¢y, respectively. If the residual is smaller
than threshold, we consider the two pps represent the same
plane. Note that we only check residuals here; Mahalanobis-
distance test can be statistically more consistent but heavy
due to its matrix inversion-related process. The possible false
associations will be filtered-out within the next update step.
We iteratively find all the associations of “*pp among the
collected pppcs.

D. Plane Measurement Update and Calibration

While the pp representation of planes can provide a fast
data association, there are several computation-related prob-
lems because of its non-minimal representation if naively
used for update. As a plane has 3DOF, while pp uses a
6DOF vector (p,n) to represent such a plane, this over-
parameterization may significantly increase the computation
burden and the numerical instability. We, therefore, change
the plane representation from plane patch (pp) to closest
point (c¢p) [35], a minimal representation of a plane and
can formulate compact residual function to perform efficient
MSCKEF update.

Specifically, ¢p can be considered as a 3D point that
resides on the plane and is the closest to the measured
frame’s origin. This cp representation can be described using
the Hesse normal vector n and distance scalar d that has the
following relation:

Leqr = Lrenlrg 31)
Len] _ [Bem| )|
= ¢y
The relation between pp and cp can be described as:
IT = 1y, (05, Ppp) (33)

By using cp, we can represent the associated plane patches
found from IV-C as a measurement function:

e Ly, — LemipLiy (L g _ LT Lio .
zj =000 = "Y' R n;(“*d; — PL,., n;) + w,
(34)

where w; is the noise of “++'TL; computed from L++1pp..
Note that the LiDAR-IMU extrinsic and the time offset
involves in frame transformation as Eq. (26)-(30) shows.
Therefore we expand our state (1) to include the extrinsic
{!R,’p.} and the time offset ’¢;, and perform online
calibration at the same time. Now we linearize the above
function to get residual as:

%z; = Hp"'IL; + HyX + w; (35)
We apply the MSCKEF feature marginalization strategy to our
plane features; after whitening the noise w;, stacking all the
measurements corresponding to “*TI; and multiplying the
left nullspace of Hy on the left side results in a residual:

z; = HyxXp, + W, (36)
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Fig. 4: Timing of different system components reported in milliseconds for
the simulated dataset. Recorded on an Intel(R) Core(TM) i7-9750H CPU
@ 2.60GHz processor in single threaded execution.

TABLE II: Simulation parameters and prior single standard deviations that
perturbations of measurements and initial states were drawn from.

Parameter Value Parameter Value
Cam Freq. (hz) 20 IMU Freq. (hz) 400
LiDAR Freq. (hz) 20 Num. Clones 10
Max. Feats 200 Pixel Proj. (px) 1
Gyro. White Noise 1.7e-04 Gyro. Rand. Walk 1.9¢-05
Accel. White Noise 2.0e-03 Accel. Rand. Walk 3.0e-03
LiDAR Channel 64 LiDAR H. Resolution 0.5
LiDAR Point Noise 2.0e-02 LiDAR Merge Itr. 3
LiDAR Neighbors 15 LiDAR Sample Interval 15
LiDAR Extrinsic Ptrb.  5.0e-02 LiDAR Toff. Ptrb. 1.0e-02

As discussed in Section IV-C, there may be false associ-
ations, and thus we perform the following Mahalanobis-
distance test with the residual (36) as:

v =2 (HPH, + Q) '2] (37)
where P and Q; are the covariance matrix of the state and
w,. If Mahalanobis-distance is smaller than the threshold,
we consider the associations are valid, and Eq. (36) can be
directly used in the MSCKF update without storing features
in the state, leading to substantial computational savings. The

used plane patches are removed from the cloud to avoid the
reuse of information.

V. SIMULATION RESULTS

MINS is implemented within the OpenVINS [3] framework
which provides both simulation and evaluation utilities. In
order to validate the proposed LiDAR integration method, we
fuse LiDAR with VIO in the simulated environment shown
in Fig 1. We leverage the LiDAR point cloud simulator from
[15] to simulate HDL-64E, and have listed the key simulation
parameters in Table II. Note that, here we only present the
LiDAR evaluation results, as the other sensor integration
methods and their calibrations are already validated in our
prior work [1]-[3].

A. Timing Analysis

As the simulated HDL-64E works at 20 Hz, the maximum
available processing time is 50 ms in order to be real-time.
As shown in Fig. 4, it is clear that the system is able to
incorporate all the measurements at a very high speed. It
took averagely 12 ms for plane patch extraction, 8 ms for
merging the planes, 1 ms for data association, 25 ms for
EKF update, 47 ms for the total process.

It is also important to report the number of measurements
processed, as we do not want to speed up the system just
by discarding the measurements. On average, the number of
planes extracted from a single LiDAR point cloud was 1494,
we get 321 planes after the merger, found 1777 associations
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TABLE III: Root mean squared error (RMSE) of each algorithm (de-
gree/meter).

Alogorithm VIO
RMSE  5.27/66.31

Wheel-VIO GPS-VIO LiDAR-VIO MINS
1.71/42.74 1.25/2.65 1.92/26.30 0.94/2.10

among 9 pppcs (240 plane feature candidates), and used
109 planes to update 10 IMU poses (60-dimensional vector),
showing the system was fully functional.

B. Extrinsic and Time offset Calibration

To validate that all LIDAR-IMU calibration parameters are
able to converge, we simulated a trajectory which excited
all-axes motions. Shown in Fig. 5, we performed online
extrinsic and time offset calibration six times with different
initial perturbations. We additionally plot the 30 bounds,
which should bound the error in the case that our estimator
is consistent. It is clear that all calibration parameters are
able to quickly converge to near their true values and remain
within 30 bounds.

VI. REAL-WORLD EXPERIMENTAL RESULTS

We further evaluate MINS in a real-world dataset, KAIST
urban39 [36], which is collected in urban area with 11.06
km long trajectory, and used the stereo camera, IMU, wheel
encoder, GPS, and 16 channel LiDAR for the estimation.
Based on VIO, different combination of sensors are tested
along with calibration and the resulting trajectories of each
algorithm are shown in Fig. 6. The root mean squared error
(RMSE) of orientation and position of each algorithm com-
pared to the ground truth the dataset provides are summarized
in Table III.

Overall, the VIO showed scale issue and combinating ad-
ditional sensor was able to solve the problem. The GPS-VIO
showed the best result among three sensor combinations,
taking advantage of its global measurements from GPS. The
LiDAR-VIO was able to run around 2 times faster than the
real-time and especially showed a good z-axis estimation
results. This is because the LIDAR was mounted at an angle
of 45 degrees downward providing most of the scans from
the surface of the road, thus the extracted planes on the road
could prevent the z-directional drift. The proposed MINS
fuses all the sensors and records the most accurate results
with all calibration parameters’ convergence while running
in real-time, showing globally accurate and locally precise
localization performance.
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Fig. 6: Trajectories of each algorithm on Urban39 dataset. Top view (top)
and vertical absolute trajectory error (bottom)

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we have developed an efficient and consistent
MSCKF-based multi-sensor aided INS, MINS, that fuses
IMU, camera, wheel, GPS, and LiDAR measurements and
performs online spatiotemporal calibration of all sensors. In
particular, we have been primarily focusing on efficiently
integrating the LiDAR measurements, which was a bottle-
neck issue for real-time multi-sensor localization due to its
large volume of data, and proposed to extract plane patches
from the point clouds and track them over scans to form
motion constraints for MSCKF update. Simulation results



show our method’s ability to integrate 64 channel 20 Hz
LiDAR in real-time, along with calibration convergence.
The proposed MINS was also validated in the real datasets,
showing its globally accurate and locally precise real-time
localization performance. In the future, we will investigate
how to efficiently include loop closures into the system.
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