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Observability Analysis of Aided INS With
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Abstract—In this article, we perform a thorough observability
analysis for linearized inertial navigation systems (INS) aided by
exteroceptive range and/or bearing sensors (such as cameras, Li-
DAR, and sonars) with different geometric features (points, lines,
planes, or their combinations). In particular, by reviewing common
representations of geometric features, we introduce two sets of uni-
fied feature representations, i.e., the quaternion and closest point
(CP) parameterizations. While the observability of vision-aided
INS (VINS) with point features has been extensively studied in
the literature, we analytically show that the general aided INS
with point features preserves the same observability property, i.e.,
four unobservable directions, corresponding to the global yaw and
the global translation of the sensor platform. We further prove
that there are at least five (or seven) unobservable directions for
the linearized aided INS with a single line (plane) feature, and,
for the first time, analytically derive the unobservable subspace for
the case of multiple lines or planes. Building upon this analysis for
homogeneous features, we examine the observability of the same
system but with combinations of heterogeneous features, and show
that, in general, the system preserves at least four unobservable
directions, while if global measurements are available, as expected,
the unobservable subspace will have lower dimensions. We validate
our analysis in Monte–Carlo simulations using both EKF-based
visual-inertial SLAM and visual-inertial odometry (VIO) with dif-
ferent geometric features.

Index Terms—Extended Kalman filter, inertial navigation
system, observability analysis, SLAM, visual-inertial odometry.

I. INTRODUCTION

INERTIAL navigation systems (INS) have been widely used
for providing six-degrees-of-freedom (DoF) pose estimation

when navigating in three-dimensional (3-D) space [1]. However,
due to the noises and biases that corrupt the inertial measurement
unit (IMU) readings, simple integration of the local angular
velocity and linear acceleration measurements can cause large
drifts in a short period of time, in particular, when using cheap
MEMS IMUs. To mitigate this issue, additional sensors (e.g.,
optical camera [2]–[6], event camera [7], RGBD camera [8], [9],
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LiDAR [10], [11], and underwater sonar [12], [13]) are often
used, i.e., aided INS. Among possible exteroceptive sensors,
optical cameras—which are of low cost and energy-efficient
while providing rich environmental information—are ideal aid-
ing sources for INS and, thus, vision-aided INS (i.e., VINS) has
recently prevailed, in particular, when navigating in GPS-denied
environments (e.g., indoors) [4], [5], [14]–[18]. While many
different VINS algorithms were developed in the last decade, the
extended Kalman filter (EKF)-based methods are still among the
most popular ones, such as multi-state constraint Kalman filter
(MSCKF) [2], observability-constrained (OC)-EKF [14], [19],
optimal-state constraint (OSC)-EKF [20], and right invariant
error (RI)-EKF [21].

System observability plays an important role in state es-
timation [22]. Understanding system observability provides
a deep insight about the system’s geometric properties [14],
[23], [24] and determines the minimal measurement modalities
or state parameters needed to initialize an estimator. It can
be used to identify degenerate motions [25], [26] that cause
additional unobservable directions and should be avoided or
alerted if possible in practice. Moreover, the observability-based
methodologies used in OC-EKF [19] and OC-VINS [14] that
enforce the system observability properties can be adopted to
improve estimation consistency. Last but not least, analytical
measurement Jacobians for aided INS estimators can be verified
through the observability analysis process. For these reasons,
significant research efforts have been devoted to the observ-
ability analysis of VINS. For example, it has been proved in
[27] that biases, velocity, and roll and pitch angles in VINS are
observable; in [14], [28], the null space of observability matrix
(unobservable subspace) of linearized VINS was analytically
derived; and in [8], [15], the Lie-derivative-based nonlinear
observability analysis was presented. However, since most of the
current VINS algorithms (e.g., [4], [5], [14]–[17]) are developed
based on point features, the observability analysis is performed
primarily using point measurements. Few has yet studied the
observability properties of the aided INS with heterogeneous
geometric features (e.g., points, lines and planes) which can be
extracted from range and/or bearing sensor measurements.

In this article, building upon our recent conference publica-
tions [25], [29], we perform a thorough observability analysis for
the linearized aided INS using points, lines, planes, and their dif-
ferent combinations. In particular, we conduct a brief overview
of the most commonly used representations of point, line, and
plane features and introduce two sets of unified parametriza-
tion: the quaternion and closest point (CP) forms, which will
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greatly facilitate our ensuing analysis. Moreover, we perform an
in-depth study to identify several degenerate motions, which is
of practical significance, as these motions may negatively impact
the system observability by causing more unobservable direc-
tions and thus exacerbate canonical VINS estimators (e.g., see
[24], [26]). The insights obtained from the observability analysis
are leveraged when developing our EKF-based VINS algorithms
[including visual-inertial odometry (VIO) and visual-inertial
SLAM (VI-SLAM)] using heterogeneous geometric features,
which are evaluated in simulations to validate our analysis.
Specifically, the main contributions of this article include:

1) We introduce unified quaternion and CP representations
for points, lines, and planes. In particular, the CP form
of line is proposed for the first time, which is a minimal
parameterization with a four-dimensional (4-D) Euclidean
vector to represent a line and its error state.

2) In the case of point features, we generalize the VINS
observability analysis to encompass any type of aiding
sensors (such as 3-D LiDAR, two-dimensional (2-D)
imaging sonar, and stereo cameras) and analytically show
that the same observability properties remain (i.e., four
unobservable directions). In the case of line (or plane)
features, we show that there exist at least five (or seven)
unobservable directions for linearized aided INS with a
single line (or plane) feature, which is also generalized to
the cases with multiple line (or plane) features in the state
vector. In the case of different feature combinations, we
show that in general, there are at least four unobservable
directions.

3) We study in-depth the effects of global measurements on
the system observability, and show that they, as expected,
will greatly improve the observability. On the other hand,
by employing spherical coordinates for the point feature,
we identify several degenerate motions that cause the
aided INS to have more unobservable directions.

4) To validate our observability analysis of linearized aided
INS, we develop our own MSCKF-based VIO and
MSCKF hybrid VI-SLAM using heterogeneous geometric
features (i.e., points, lines, planes, and their combina-
tions) and perform extensive Monte–Carlo simulations by
comparing the standard and the benchmark (ideal) filters.

II. RELATED WORK

Aided INS is a classical research topic with a significant body
of literature [30] and has recently been re-emerging in part due
to the advancement of sensing and computing technologies. In
this section, we briefly review the related literature by focusing
on the vision-aided scenarios.

A. Aided INS With Points, Lines, and Planes

As mentioned earlier, VINS is among the most popular local-
ization methods, in particular for resource-constrained sensor
platforms [such as mobile devices and micro-aerial vehicles
(MAVs)] navigating in GPS-denied environments (e.g., see [4],
[31]–[33]). While most current VINS algorithms focus on using
point features (e.g., [4], [14]–[16]), line and plane features
should not be blindly discarded in structured environments [6],

[9], [26], [34]–[40], in part because (i) they are ubiquitous and
compact in many urban or indoor environments (e.g., doors,
walls, and stairs), (ii) they can be detected and tracked over a
relatively long time period, and (iii) they are more robust in
textureless environments compared to point features.

In the case of utilizing line features, Kottas et al. [34], [41]
represented the line with a quaternion and a (distance) scalar.
With this parameterization, they studied the observability prop-
erties for linearized VINS with point and line features. They also
leveraged the structural line constraints (e.g., parallel lines) to
improve their estimator. Yu et al. [35] proposed a minimal four-
parameter representation of line features for VIO using rolling-
shutter cameras, while Zheng et al. [6] used two endpoints
(of a line segment) to represent a line and designed point/line
VIO based on the MSCKF. Recently, He et al. [36] employed
the Plücker representation for line parameterization with the
minimal orthonormal error states [42], and developed a tightly
coupled keyframe-based monocular inertial SLAM system.

In the case of exploiting plane features, Guo et al. [38]
analyzed the observability of VINS using both point and plane
features, while assuming the plane orientation was a priori
known. The authors showed that VINS with only plane bearing
measurements have 12 unobservable directions as compared to
four if both point and plane measurements are present. Hesch
et al. [39] developed a 2-D LiDAR-aided INS algorithm that
jointly estimates the perpendicular structural planes associated
with buildings, along with the IMU states. In our previous
work [9], a tightly coupled aided INS with point and plane
features was designed and point-on-plane constraints were also
incorporated to improve the estimator accuracy.

From the abovementioned work, one particular challenge of
estimating these geometric features is to find proper parame-
terization. However, different geometric feature representations
are presented in literature. In this article, we summarize the
commonly used feature representations and propose two unified
forms: the quaternion and CP. Both proposed forms can be
incorporated into existing estimators due to their minimal error
states. We analytically derive the Jacobians with these unified
parameterizations and use these Jacobians for observability
analysis. In addition, in most of the abovementioned works,
only aided INS with point/line or point/plane features were
developed. In this article, we build an estimator that can handle
all geometric features of points, lines, and planes.

B. VINS Observability Analysis

As system observability is important for consistent esti-
mation [23], we have been the first to design observability-
constrained consistent estimators for robot localization and
mapping problems in our prior work [17], [19], [43]–[48].
Since then, significant research efforts have been devoted to the
observability analysis of VINS. In particular, in [49], [50], the
system’s indistinguishable trajectories were examined from the
observability perspective. By employing the concept of contin-
uous symmetries as in [51], Martinelli [27] analytically derived
the closed-form solution of VINS and identified that IMU bi-
ases, 3-D velocity, and global roll and pitch angles are observ-
able. He also examined system observability with degenerate
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motions [24], minimum available sensors [52], and unknown
inputs [53], [54]. Recently, he provided analytic solutions for
cooperative VIO [55] with observability analysis. Based on the
Lie derivatives and observability matrix rank test [56], Hesch
et al. [15] analytically showed that the monocular VINS has
four unobservable directions, i.e., the global yaw and the global
position of the exteroceptive sensor. Guo et al. [38] extended
this method to the RGBD-camera-aided INS and showed that
the system preserves the same unobservable directions if both
point and plane measurements are available. Using a similar
idea, the observability of IMU-camera (monocular, RGBD)
calibration was analytically studied in [8], [57], [58], and the
extrinsic calibration between the IMU and camera was shown
to be observable, given generic motions. Additionally, in [59],
[60], the system with a downward-looking camera measuring
point features from horizontal planes was shown to have the
sensor’s global z position observable.

More importantly, as in practice, VINS estimators are built
upon the linearized system, it necessitates to perform observ-
ability analysis for the linearized VINS whose observability
properties can be exploited when designing an estimator. For
instance, Li et al. [16], [61] performed observability analy-
sis for the linearized VINS (without considering biases) and
adopted the idea of first-estimates Jacobian [44] to improve
filter consistency. Analogously, in [14], [28], [62], the authors
conducted observability analysis for the linearized VINS with
full states (including IMU biases) and analytically derived the
system unobservable directions by finding the right null space
of the observability matrix [14]. Based on this analysis, the
observability-constrained (OC)-VINS algorithm was developed.
In addition, Wu et al. [26] identified two degenerate motions
(pure translation and constant acceleration) which could cause
more unobservable directions for monocular camera-aided INS.
Based on similar methodology, in our recent work [63], we
incorporated both spatial and temporal calibrations into aided
INS and proved that all these calibration parameters are ob-
servable under random sensor motion. We also identified four
degenerate motions that cause certain calibration parameters to
be unobservable.

Because of its practical significance in state estimation, the
observability analysis of the linearized aided INS with hetero-
geneous features is the primary focus of this work, in which
we have also studied the effects of global measurements and
degenerate motions on the system observability. In particular,
unlike [14], [28], [62], in our observability analysis, we con-
sider generic aiding sensors and relax the assumption that the
aiding sensor frame coincides with the IMU frame; and different
with the degenerate motion analysis in [24] and [26], we show
that the rigid transformation between the aiding sensor and
IMU does affect the degenerate motions. As compared to the
observability analysis of aided INS with global measurements
in [64], which is based on Lie derivatives and only considers
global roll and pitch measurements, we considered linearized
aided INS with global position and orientation measurements.
Weiss [64] verified the unobservable directions numerically (in
Mathematica), instead of computing them analytically as in this
article.

Fig. 1. Geometrical parameters for (a) point pf , (b) line pl, and (c) plane pπ .

III. POINT, LINE, AND PLANE REPRESENTATIONS

As proper representations of geometrical features are im-
portant for state estimation, based on an extensive review of
the most commonly used representations of points, lines and
planes—which are summarized in Table I and illustrated in
Fig. 1—we introduce two sets of unified representations, i.e.,
the quaternion and CP parameterizations.

A. Point Representations

Model 1 in Table I represents the homogeneous coordinate,
fi, i ∈ {1, . . . , 4}, for a point feature pf , which is the most
general form. Model 2 represents a point with a unit bear-
ing vector bf and a range scalar rf measuring the distance
from point to the origin O [see Fig. 1(a)]. Since the 3D unit
vector bf can be represented by two angles θf and φf : bf =
[cos θf cosφf sin θf cosφf sinφf ]

�, we can easily derive
Model 3, which is similar to spherical coordinates. If we use
the inverse of range scalar λf = 1/df , we get Model 4, which
essentially is equivalent to inverse depth representation [65].
Recently, Maley and Huang [66] introduced a unit quaternion
representation (Model 5) for points, which wraps bf and rf into
a unit quaternion. Model 5 leverages the quaternion error state,
which is minimal for point state estimation. For example, a point
in quaternion form can be written as1

q̄f =

⎡
⎣
qf

qf

⎤
⎦ =

1√
1 + r2f

⎡
⎣
bf

rf

⎤
⎦ = δq̄f ⊗ ˆ̄qf �

⎡
⎣
1

2
δθf

1

⎤
⎦⊗ ˆ̄qf

(1)

where δθf is the error state for point in unit quaternion form.
Let pf be the CP from the point to the origin, which is the most
conventional parameterization for point feature (i.e., Model 6).
It can be computed by multiplying the bearing vector bf with
the range scalar rf as

pf = rfbf = p̂f + p̃f (2)

where p̃f is the error state in the CP form.

1Throughout this article, x̂ is used to denote the estimate of a random variable
x, while x̃ = x− x̂ is the error in this estimate. The quaternion error state δθ

is defined as δq̄ = [ 12 δθ
� 1]� = q̄ ⊗ ˆ̄q−1, where ⊗ denotes JPL quaternion

multiplication [67]. 0m×n and 0n denote m× n and n× n matrices of zeros,
respectively, and In is the identity matrix.
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TABLE I
SUMMARY OF POINT, LINE, AND PLANE REPRESENTATIONS

B. Line Representations

Given two 3-D points pf1 and pf2 in a line xl, we can obtain
its Plücker coordinates (see Model 1 of lines in Table I) as in
[42], [68]

[
nl

vl

]
=

[ �pf1�pf2

pf2 − pf1

]
(3)

where �·� is the cross-product operation (or a skew symmetric
matrix), nl represents the normal direction of the plane con-
structed by the two points and the origin, and vl represents
the line direction. In Model 1, the distance from the origin
to the line can be computed as dl =

||nl||
||vl|| . Bartoli et al. [42]

introduced the minimal orthonormal error state (δθl and δφl;
see [25] for detailed explanations) of Model 1 when involving
lines in structure from motion. We can also represent the line
with Model 2, which contains all the geometric elements of a
line, including a unit normal direction ne = nl

||nl|| , a unit line
direction ve = vl

||vl|| , and the distance scalar dl [see Fig. 1(b)].
Alternatively, a line can be parameterized by three angles θl,
φl, αl and a distance dl (Model 3; see our companion technical
report [69] for the transformation between Models 2 and 3). In
analogy to the case of point features, we can use the inverse
depth (λl = 1/dl) representation (Model 4) for line features.
Interestingly, Kottas et al. [34] used a unit quaternion q̄l and
a distance scalar dl to represent a line (Model 5), where the
quaternion describes the line direction

R(q̄l) =
[
ne ve �ne�ve

]
(4)

q̄l = δq̄l ⊗ ˆ̄ql �
⎡
⎣
1

2
δθl

1

⎤
⎦⊗ ˆ̄ql (5)

where δθl represents the error state of the line quaternion. The
4-D minimal error states of the line include the quaternion error
angle and the distance scalar error [δθ�

l d̃l]
�.

More importantly, if we multiply the unit quaternion q̄l with
the distance scalar dl, we obtain a 4-D vector, which can be
considered as the “closest point” for a line in the 4-D vector
space (Model 6):

pl = dlq̄l = dl
[
q�
l ql

]�
= p̂l + p̃l (6)

where p̃l is the 4-D error state for the CP of a line. To the
best of our knowledge, this minimal CP parameterization for
3-D lines (6) is proposed for the first time and shown to have
good numerical stability (see Section VIII). The transformation
between the quaternion and CP error states can be found in
Appendix A.

C. Plane Representations

Similar to point features, the homogeneous coordinates
(πi, i ∈ {1, . . . , 4}) are the most general form of planes
(Model 1) [70]. The Hesse form (Model 2) uses the normal
direction nπ and the distance scalar dπ to represent a plane. As
nπ can be represented by two angles θπ and φπ [see Fig. 1(c)],
nπ = [cos θπ cosφπ sin θπ cosφπ sinφπ]

�, the spherical co-
ordinates (Model 3) can be used to represent the plane with two
angles (θπ andφπ) and the distance scalar dπ . If using the inverse
depth λπ = 1/dπ , we have the inverse depth representation for
planes (Model 4). Recently, Kaess [40] proposed to use a unit
quaternion to represent a plane by stacking the unit normal
direction and the distance scalar into a quaternion (Model 5)

q̄π =

[
qπ

qπ

]
=

1√
1 + d2π

[
nπ

dπ

]
=δq̄π ⊗ ˆ̄qπ �

⎡
⎣
1

2
δθπ

1

⎤
⎦⊗ ˆ̄qπ

(7)

where δθπ is the minimal error state for the quaternion plane
representation. In Model 6, the CP from the plane to the origin
is used to represent the plane [11], [71], which has the minimal
Euclidean error state p̃π

pπ = dπnπ = p̂π + p̃π. (8)

D. Remarks

It is clear that parameterizations based on Models 1 and 2
may cause numerical issues (e.g., singular information matrices)
if they are directly used in least-squares optimization. While
Models 3 and 4 are minimal representations, these models
might suffer from singularities when the elevation angle φ
approximates ±π

2 , similar to gimbal lock for Euler angles.
Interestingly, all point [66], line [34], and plane [40] features

can be parameterized by the unified representation of quaternion
(Model 5), which exploits the minimal error states of quaternion
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for better numerical stability during state estimation. However,
the observability properties of quaternion representation for
point and plane are missing in the literature, although it has
been studied in the case of line features [34]. Therefore, we
perform an extensive observability analysis with the unified
quaternion representation for points, lines, and planes, where
we have analytically derived the measurement Jacobians (see
our companion technical report [69] for detailed derivations),
showing that the same observability properties of aided INS are
preserved.

More importantly, the CP form (i.e., Model 6) provides an-
other unified parameterization for different geometric features.
The CP model for point is simply its 3-D position in Euclidean
space. While the CP representation for plane feature was in-
troduced for LiDAR-aided INS in our prior work [11], in this
work, we propose a novel 4-D CP model for line features with
the minimal 4-D error states in 4-D Euclidean space. Note
that when using the CP parameterization, the error propagation
for different geometric features can be easily defined in the
Euclidean vector space, and thus cost functions with intuitive
geometric interpretation can be formulated.

We should point out that in order to make our presentation con-
cise and easy to follow, we will use the quaternion representation
of line and the CP of plane for observability analysis, while the
detailed analysis for unified quaternion and CP parameterization
is documented in our companion technical report [69].

IV. AIDED INS WITH DIFFERENT FEATURES

In this section, we describe the system and measurement mod-
els for aided INS with different geometric features, providing the
basis for our ensuing observability analysis.

The state vector of the aided INS contains the current IMU
state xI and the feature state Gxf :

x =
[
x�
I

Gx�
f

]�

=
[
I
Gq̄

� b�
g

Gv�
I b�

a
Gp�

I
Gx�

f

]�
. (9)

In the above expressions, I
Gq̄ is a unit JPL quaternion [67]

that represents the rotation from the global frame {G} to the
current IMU frame {I}, whose corresponding rotation matrix is
I
GR(q̄). bg and ba represent the gyroscope and accelerometer
biases, respectively, while GvI and GpI denote the current
IMU velocity and position in the global frame. Gxf denotes
the generic features (expressed in global frame), which might
include points, lines, planes, or their combinations.

A. System Dynamic Model

The system dynamic model is given by (see [67])

I
G
˙̄q(t) =

1

2
Ω
(
Iω(t)

)
I
Gq̄(t)

GṗI(t) =
GvI(t),

Gv̇I(t) =
Ga(t)

ḃg(t) = nwg(t), ḃa(t) = nwa(t),
Gẋf (t) = 0mf×1 (10)

where ω and a are the angular velocity and linear acceleration,
respectively. nwg and nwa are the zero-mean Gaussian noises
driving the gyroscope and accelerometer biases. mf is the di-
mension of Gxf , and Ω(ω) � [−�ω�

−ω�
ω
0 ]. The continuous-time

linearized error-state equation is given by

˙̃x(t) �
[

Fc(t) 015×mf

0mf×15 0mf

]
x̃(t) +

[
Gc(t)

0mf×12

]
n(t)

=: F(t)x̃(t) +G(t)n(t) (11)

where Fc(t) and Gc(t) are the continuous-time error-state
transition matrix and noise Jacobian matrix for IMU state,
respectively. n(t) = [n�

g n�
wg n

�
a n�

wa]
� is modeled as zero-

mean Gaussian noise with autocorrelation E[n(t)n�(τ)] =
Qcδ(t− τ). Note that ng(t) and na(t) are the Gaussian noises
contaminating the angular velocity and linear acceleration mea-
surements, respectively. The discrete-time state transition matrix
Φ(k+1,1) from time t1 to tk+1 can be derived recursively from
Φ̇(k+1,k) = F(tk)Φ(k+1,k) with the identity matrix as the initial
condition [14]:

Φ(k+1,1) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Φ11 Φ12 03 03 03 0mf×3

03 I3 03 03 03 0mf×3

Φ31 Φ32 I3 Φ34 03 0mf×3

03 03 03 I3 03 0mf×3

Φ51 Φ52 Φ53 Φ54 I3 0mf×3

03×mf
03×mf

03×mf
03×mf

03×mf
Imf

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(12)

whereΦij is the (i, j) block of this matrix. In particular, for pure
translation, the expression of Φ54 can be analytically given by
(see [14], [26]):

Φ54 = −G
I1
R

∫ tk

t1

∫ ts

t1

dτdts = −1

2
G
I1
Rδt2k (13)

where δtk = tk − t1 is the time elapsed from the beginning.
With the state transition matrix (12), we can also analytically or
numerically compute the discrete-time noise covariance

Qk =

∫ tk+1

tk

Φ(kH,τ)G(τ)QcG
�(τ)Φ(kH,τ)dτ. (14)

B. Point Measurements

Point measurements from different exteroceptive sensors
(such as monocular/stereo camera, acoustic sonar, and Li-
DAR) in the aided INS can be generally modeled as range
and/or bearing observations which are functions of the relative
position of the point feature expressed in the sensor frame
Cpf = [Cxf

Cyf
Czf ]

� (see [25])

zp=

[
λr 01×2

02×1 λbI2

]

︸ ︷︷ ︸
Λ

[
z(r)

z(b)

]
=Λ

⎡
⎣
√

Cpf
�Cpf + n(r)

hb

(
Cpf ,n

(b)
)

⎤
⎦ (15)

Cpf =
C
I R

I
GR

(
Gpf − GpI

)
+ CpI (16)
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where z(r) and z(b) represent generic range and bearing mea-
surements, respectively.hb(·) is a generic bearing measurement
function whose actual form depends on the particular sensor
used. For example, such bearing model in the case of monocular
camera is provided in Appendix B, and more comprehensive
cases can be found in our companion technical report [69]. Λ
denotes the measurement selection matrix with scalars λr and
λb; for example, if λb = 1 and λr = 1, then zp contains both
range and bearing measurements. In (15), n(r) and n(b) are
zero-mean Gaussian noises2 (inferred from sensor raw data) for
the range and bearing measurements. We then linearize these
measurements about the current state estimate

z̃p � Λ (HI x̃+Hnn) =: Λ

[
HrHf x̃+ n(r)

HbHf x̃+Hnn
(b)

]

=: Λ

[
Hr

Hb

]

︸ ︷︷ ︸
Hproj

Hf x̃+Λ

[
n(r)

Hnn
(b)

]
(17)

where we have

Hr =
∂z̃(r)

∂C p̃f
, Hb =

∂z̃(b)

∂C p̃f
, Hf =

∂C p̃f

∂x̃
, Hn =

∂z̃(b)

∂n(b)
.

Clearly, depending on the selection matrix Λ, Hproj may be
the range-only measurement Jacobian Hr (λr = 1 and λb = 0),
bearing-only measurements Jacobian Hb (λr = 0 and λb = 1),
or both. Interested readers can refer to [69] for detailed deriva-
tions of these Jacobians when using different aiding sensors.

C. Line Measurements

The visual line measurement is given by the distances from
two endpoints xs := [u1, v1, 1]

� and xe := [u2, v2, 1]
� of the

detected line segment to the line in the image denoted by l′ which
is the projection of the 3-D line CL in Plücker coordinates (also
see our prior work [68])

zl =
[ e1
ln

e2
ln

]�
, CL =

[
Cdl

Cne

Cve

]
(18)

l′ =
[
K 03

]
CL =

[
l1 l2 l3

]�
(19)

K =

⎡
⎢⎢⎣

f2 0 0

0 f1 0

−f2c1 −f1c2 f1f2

⎤
⎥⎥⎦ (20)

CL =

[
C
I R �CpI�CI R
03

C
I R

][
I
GR −I

GR�GpI�
03

I
GR

]
GL (21)

where e1 = x�
s l

′, e2 = x�
e l

′, ln =
√

l21 + l22,K is the projection
matrix for line (not point) features (see [69]), with f1, f2, c1,
and c2 as the camera intrinsic parameters. The relationship (21)
is derived based on the geometry of the two points on the

2Throughout the article, n with superscript (e.g., n(π)) denotes the noise that
follows a zero-mean Gaussian distribution, while n with subscript (e.g., nπ)
represents the normal direction of a plane.

line,Gpf i =
GpC + G

CR
Cpf i (i = 1, 2) [see (3)]. Moreover, the

measurement Jacobian can be computed as follows [69]:

HI =
∂z̃l

∂ l̃′
∂ l̃′

∂x̃
=: HlHf (22)

Hl =
1

ln

[
u1 − l1e1/l

2
n v1 − l2e1/l

2
n 1

u2 − l1e2/l
2
n v2 − l2e2/l

2
n 1

]
. (23)

D. Plane Measurements

Plane features (e.g., from point clouds) can be written as

zπ = Cdπ
Cnπ + n(π) =: Cpπ + n(π) (24)

where Cpπ represents the plane in the sensor’s local frame and
n(π) represents the plane measurement noise. To compute the
corresponding measurement Jacobians, the plane parameters in
the global frame can be transformed to the local frame as

[
Cnπ

Cdπ

]
=

[
C
I R 03×1

Cp�
I
C
I R 1

][
I
GR 03×1

−Gp�
I 1

][
Gnπ

Gdπ

]
.

(25)

Therefore, the measurement Jacobians are given by [69]

HI =
∂z̃

∂C p̃π

∂C p̃π

∂x̃
=: HπHf (26)

Hπ =
[
C d̂πI3

C n̂π

]
. (27)

E. Observability Analysis

The key reasons for observability analysis include the fol-
lowing: (i) it provides a deep insight about the system’s geo-
metric properties [14], [23], [24] and determines the minimum
measurement modalities or state parameters needed to initialize
the estimator, (ii) it can be used to identify degenerate mo-
tions [25], [26] which cause additional unobservable directions
and should be avoided in real applications whenever possible,
and (iii) the observability-constrained (OC)-based methodology
as in OC-EKF [23] and OC-VINS [14], that enforce the correct
observability properties, can be adopted to improve consistency.

Observability analysis for the linearized aided INS can be
performed in a similar way as in [14], [19]. In particular, the
observability matrix M(x) can be constructed as

M(x) =

⎡
⎢⎢⎢⎢⎢⎢⎣

HI1Φ(1,1)

HI2Φ(2,1)

...

HIkΦ(k,1)

⎤
⎥⎥⎥⎥⎥⎥⎦

(28)

where HIk is the measurement Jacobian at time step k. Φ(k,1)

can be computed based on (12). The unobservable directions
span the right null space of this observability matrix, that is,
M(x)N = 0, where N represents the right null space.
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V. OBSERVABILITY ANALYSIS OF AIDED INS WITH

DIFFERENT FEATURES

In this section, we first perform observability analysis for the
linearized systems of aided INS with one single homogeneous
geometric feature (point, line, or plane) and then extend to the
case of heterogeneous features. Note that for concise presen-
tation of the article, we include the generalization to multiple
point, line, and plane features instead in the companion technical
report [69].

A. Aided INS With One Point Feature

We first consider the aided INS with one point feature and the
state vector can be written as

x =
[
x�
I

Gp�
f

]�
. (29)

We conduct the observability analysis in a similar way as in [14],
[19]. In particular, as the unobservable directions of this aided
INS span the right null space of M(x) (28), we compute the
measurement JacobiansH(p)

Ik
based on (15) as follows [see (17)]:

H
(p)
Ik

= Λ

[
Hr,k

Hb,k

]
C
I R̂

[ �Ik p̂f � 03×9 −Ik
G R̂ Ik

G R̂
]

︸ ︷︷ ︸
Hf,k

= Hproj,k
C
I R̂

Ik
G R̂

[
Hp1 03×9 −I3 I3

]
(30)

where we have used (16) and (17) as well as the following matrix:

Hp1 =
⌊(

Gp̂f − Gp̂Ik

)⌋
Ik
G R̂

�
. (31)

Specifically, for each block row of M(x) [see (28)], we have

H
(p)
Ik

Φ(k,1) = Hproj,k
C
I R̂

Ik
G R̂

× [
Γ1 Γ2 Γ3 Γ4 −I3 I3

]
(32)

where

Γ1 =

⌊(
Gp̂f − Gp̂I1 − Gv̂I1δtk − 1

2
Gg(δtk)

2

)⌋
G
I1
R̂

Γ2 =
⌊(

Gp̂f − Gp̂Ik

)⌋
Ik
G R̂�Φ12 −Φ52

Γ3 = −I3δtk, Γ4 = −Φ54 (33)

where g = ||Gg|| and Gg = [0, 0,−g]�. Note that for the anal-
ysis purpose, we assume that when computing different Jaco-
bians, the linearization points for the same state variables remain
the same [19]. By inspection, it is not difficult to see that the null
space of M(x) in this case is given by

N =

⎡
⎢⎢⎣

Ng 012×3

−�Gp̂I1�Gg I3

−�Gp̂f �Gg I3

⎤
⎥⎥⎦ =:

[
Nr Np

]
(34)

where Ng is defined by

Ng =

[(
I1
G R̂Gg

)�
01×3 − (�Gv̂I1�Gg

)�
01×3

]�
. (35)

It is interesting to notice that in (34), Np corresponds to the
sensor’s global translation, while Nr relates to the global rota-
tion around the gravity direction. We thus see that the system has
at least four unobservable directions (Np and Nr). Moreover,
in analogy to [8], [15], [19], we have further performed the
nonlinear observability analysis based on Lie derivatives [56] for
the continuous-time nonlinear aided INS, which is summarized
as follows:

Lemma 1: The continuous-time nonlinear aided INS with
point features (detected from generic range and/or bearing
measurements) has four unobservable directions.

Proof: See [69]. �

B. Aided INS With One Line Feature

When navigating in structured environments, line features are
ubiquitous and should be exploited for aided INS to improve
system performances. In the following, we perform observabil-
ity analysis for the aided INS with one line feature to provide
insights for building consistent estimators. For conciseness of
presentation, the quaternion form for line (Model 5 for line in
Section III-B) is used and the state vector containing one line
feature can be written as

x =
[
x�
I

Gq̄�l
Gdl

]�
. (36)

With the line measurements (18), the measurement Jacobian
is computed by (see (22) and [69])

H
(l)
Ik

= Hl,k
∂ l̃′

∂CL̃

∂CL̃

∂I L̃

[
∂Ik L̃
∂x̃I

∂Ik L̃

∂
[
δθ�

l
Gd̃l

]�
]

︸ ︷︷ ︸
Hf,k

. (37)

With this, the block row of the observability matrix M(x) (28)
at time step k can be written as

H
(l)
Ik
Φ(k,1) = Hl,k

∂ l̃′

∂CL̃

∂CL̃

∂I L̃

[
Ik
G R̂ 03

03 I3

]

×
[
Γl11 Γl12 Γl13 Γl14 Γl15 Γl16 Γl17

Γl21 Γl22 Γl23 Γl24 Γl25 Γl26 Γl27

]

(38)

where Γlij , i ∈ {1, 2}, j ∈ {1, . . . , 7} can be found in our com-
panion technical report [69]. Therefore, we have the following
result.

Lemma 2: The aided INS with a single line feature has at
least five unobservable directions denoted by Nl

Nl =

⎡
⎢⎢⎢⎢⎢⎢⎣

Ng 012×3 Nv

−�Gp̂I1�Gg GR̂l 03×1

−Gg
1

Gd̂l

Gv̂ee
�
1 03×1

0 −e�3 0

⎤
⎥⎥⎥⎥⎥⎥⎦
=:

[
Nl1 Nl2:5

]

(39)

where Nv and GR̂l are defined by

Nv =
[
01×3 01×3

Gv̂�
e 01×3

]�
(40)
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GR̂l =
[
Gn̂e

Gv̂e �Gn̂e�Gv̂e

]
. (41)

Proof: See [69]. �
It is not difficult to see that Nl1 relates to the sensor rotation

around the gravitational direction, Nl2:4 associates with the
sensor’s global translation, and Nl5 corresponds to the sensor’s
motion along the line direction. Note also that the above analysis
is based on the projective line measurement model (18). Addi-
tionally, in our companion report [69], we have also considered
the direct line measurement model, for example, by extracting
lines from point clouds, and show that the same unobservable
subspace Nl (39) holds.

We want to point out again that Lemma 2 holds even with
multiple parallel lines in the state vector; if there are nonparallel
lines, the unobservable direction Nl5 would not hold and there
would remain four unobservable directions with Nl1:4 for the
system.

C. Aided INS With One Plane Feature

Now we perform observability analysis of the aided INS
with plane features which are also important geometric fea-
tures commonly seen in structured environments. In particular,
to simplify the presentation, our analysis is based on the CP
parameterization of one plane feature in the state vector. The
state vector is given by

x =
[
x�
I

Gp�
π

]�
. (42)

Based on the plane measurements (24), we can compute the
Jacobians with respect to x̃ (see [69]) as

H
(π)
Ik

= Hπ,k

∂
[
C ñ�

π
C d̃π

]�

∂
[
I ñ�

π
I d̃π

]�

⎡
⎣ ∂

[
I ñπ

I d̃π

]

∂x̃I

∂

[
I ñπ

I d̃π

]

∂Gp̃π

⎤
⎦

︸ ︷︷ ︸
Hf,k

.

(43)

The block row of the observability matrix is computed by

H
(π)
Ik

Φ(k,1) = Hπ,k

∂
[
C ñ�

π
C d̃π

]�

∂
[
I ñ�

π
I d̃π

]�
[

Ik
G R̂ 03×1

01×3 1

]

×
[
Γπ11 Γπ12 Γπ13 Γπ14 Γπ15 Γπ16

Γπ21 Γπ22 Γπ23 Γπ24 Γπ25 Γπ26

]

(44)

whereΓπij , i ∈ {1, 2}, j ∈ {1, . . . , 6} can be found in our com-
panion technical report [69]. With that, we have the following
result.

Lemma 3: The aided INS with a single plane feature has at
least seven unobservable directions

Nπ =

⎡
⎢⎢⎣

Ng 012×3 N123

−�Gp̂I1�Gg GR̂π 03

−�Gp̂π�Gg Gn̂πe
�
3 03

⎤
⎥⎥⎦

=:
[
Nπ1 Nπ2:4 Nπ5:7

]
. (45)

In the above expression, given Gn̂⊥
1 and Gn̂⊥

2 that are the unit
vectors orthonormal to each other and perpendicular to Gn̂π , we
have defined N123 and the plane orientation GRπ as follows:

N123 =

⎡
⎢⎢⎢⎢⎢⎣

03×1 03×1
I1
G R̂Gn̂π

03×1 03×1 03×1

Gn̂⊥
1

Gn̂⊥
2 03×1

03×1 03×1 03×1

⎤
⎥⎥⎥⎥⎥⎦

(46)

GR̂π =
[
Gn̂⊥

1
Gn̂⊥

2
Gn̂π

]
. (47)

Proof: See [69]. �
Note that as compared to [38] where it was shown that the

VINS with bearing measurements to planes has 12 unobservable
directions, we analytically show that, given the direct plane
measurements (24), the aided INS with a single plane feature
has at least seven unobservable directions: (i) Nπ1 that relates
to the rotation around the gravity, (ii) Nπ2:4 that associates with
the position of the sensor platform, (iii) Nπ5:6 that corresponds
to the 2-D translation on a plane parallel to the feature plane, and
(iv) Nπ7 that corresponds to the 2-D rotation around the plane
normal Gnπ .

Note also that Lemma 3 can be easily extended to the case of
multiple planes, in which we have the following findings:

1) If all planes are parallel to each other, the unobservable
directions Nπ5:7 will still hold.

2) If all the planes have parallel intersecting lines, the di-
mension of the unobservable subspace becomes 5 and the
extra unobservable direction is related to the sensor motion
along these parallel lines. This situation is similar to the
case of a single line feature in the state vector.

3) If planes have nonparallel intersection lines, the system
will still have four unobservable directions as Nπ1:4.

D. Aided INS With Heterogeneous Features

We now examine the observability properties for the case of
one feature of each type included in the state vector

Gxf =
[
Gp�

f
Gq̄�l

Gdl
Gp�

π

]�
. (48)

The measurement model becomes [see (15), (18) and (24)]

zplπ =
[
z�p z�l z�π

]�
. (49)

The measurement Jacobians can be computed based on (30),
(22), and (44). Then, the k-th block row of the observability

Authorized licensed use limited to: UNIVERSITY OF DELAWARE LIBRARY. Downloaded on May 22,2021 at 02:13:07 UTC from IEEE Xplore.  Restrictions apply. 



YANG AND HUANG: OBSERVABILITY ANALYSIS OF AIDED INS WITH HETEROGENEOUS FEATURES OF POINTS, LINES, AND PLANES 1407

matrix M(x) is

H
(plπ)
Ik

Φ(k,1) =

⎡
⎢⎢⎣
HP 0 0

0 HL 0

0 0 HΠ

⎤
⎥⎥⎦

×

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

Γ1 Γ2 Γ3 Γ4 −I3 I3 03 03×1 03

Γl11 Γl12 Γl13 Γl14 Γl15 03 Γl16 Γl17 03

Γl21 Γl22 Γl23 Γl24 Γl25 03 Γl26 Γl27 03

Γπ11 Γπ12 Γπ13 Γπ14 Γπ15 03 03 03×1 Γπ16

Γπ21 Γπ22 Γπ23 Γπ24 Γπ25 01×3 01×3 0 Γπ26

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(50)

HP = Hproj,k
C
I R̂

Ik
G R̂ (51)

HL = Hl,k
∂ l̃′

∂CL̃

∂CL̃

∂I L̃

[
Ik
G R̂ 03

03 I3

]
(52)

HΠ = Hπ,k

∂
[
C ñ�

π
C d̃π

]�

∂
[
I ñ�

π
I d̃π

]�
[

Ik
G R̂ 03×1

01×3 1

]
. (53)

The observability properties of this aided INS are given by
Lemma 4.

Lemma 4: The aided INS with one point, one line, and one
plane feature in the state vector has four unobservable directions

Nplπ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ng 012×3

−�Gp̂I1�Gg I3

−�Gp̂f �Gg I3

−Gg
1

Gd̂l

Gv̂ee
�
1
GR̂�

l

0 −e�3
GR̂�

l

−�Gp̂π�Gg Gn̂πe
�
3
GR̂�

π

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=:
[
Nplπ1 Nplπ2:4

]
. (54)

Proof: See Appendix C. �

VI. OBSERVABILITY ANALYSIS FOR AIDED INS WITH

GLOBAL MEASUREMENTS

Aided INS may also have access to (partially) global mea-
surements provided by, for example, GPS receivers, sun/star
sensors, barometers, and compasses. Intuitively, such measure-
ments would alter the system observability properties, even if
only partial (not full 6-DoF pose) information is available. In
this section, we systematically examine the impacts of such
measurements on the system observability.

A. Global Orientation Measurements

We consider the case where the aided INS has access to
global orientation measurements; for example, provided by a
sun sensor, or a magnetic compass, or by detecting a plane with

known orientation [38], [59]: z(n) = CNn = C
I R

I
GR

GNn. In
this case, the Jacobian and the block row of the observability
matrix can be computed as

HIkΦ(k,1) =

⎡
⎣H

(plπ)
Ik

Φ(k,1)

H
(n)
Ik

Φ(k,1)

⎤
⎦ (55)

where H
(n)
Ik

is the orientation measurement Jacobian with
respect to (48), yielding

H
(n)
Ik

Φ(k,1) =
C
I R̂

Ik
G R̂

[ �GNn�GI1R̂ Γ5 03×19

]
(56)

whereΓ5 = �GNn�IkG R̂�Φ12. If GNn is not parallel to Gg, i.e.,
�GN�Gg 
= 0, the rotation around the gravity direction becomes
observable, and the unobservable directions are

Nn =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

012×3

I3

I3

1
Gd̂l

Gv̂ee
�
1
GR̂�

l

−e�3
GR̂�

l

Gn̂πe
�
3
GR̂�

π

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (57)

B. Global Position Measurements

In addition to the point, line, and plane measurements, we
consider the case where global position measurements are also
available from, for example, a GPS receiver or a barometer. In
the following, we use such a global measurement individually
along the x-, y-, and z-axis.

If several measurements on the global x direction are pre-
sented, the sensor’s translation along x direction (both the x
position and velocity) will be known, and therefore, there will be
no ambiguity about the global yaw. The additional global x-axis
measurement can be given by z(x) = e�1

GpI . The measurement
Jacobians and the block row of observability matrix can be
computed as [see (50)]

HIkΦ(k,1) =

⎡
⎣H

(plπ)
Ik

Φ(k,1)

H
(x)
Ik

Φ(k,1)

⎤
⎦ (58)

where H
(x)
Ik

is the global x measurement Jacobian, yielding

H
(x)
Ik

Φ(k,1) =
[
01×12 e�1 01×3 01×4 01×3

]
. (59)

We can show that the unobservable subspace becomes

Nx =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

012×2

Ax

Ax

1
Gd̂l

Gv̂ee
�
1
GR̂�

l Ax

−e�3
GR̂�

l Ax

Gn̂πe
�
3
GR̂�

πAx

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(60)
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where Ax = [02×1 I2]
�. As compared to N in (54) without

global xmeasurements, both the global translation inx direction
and the rotation around the gravity direction become observable.
Analogously, if a global y-axis measurement is available, trans-
lation along y and the rotation around the gravity will become
observable [69].

Proceeding similarly, if the global translation in z direction is
directly measured, e.g., by a barometer, we have an additional
global z-axis measurement z(z) = e�3

GpI . In this case, the block
row of the observability matrix becomes

HIkΦ(k,1) =

⎡
⎣H

(plπ)
Ik

Φ(k,1)

H
(z)
Ik

Φ(k,1)

⎤
⎦. (61)

Sincee3 is parallel to Gg, we havee�3 �GpI1�Gg = 0. Therefore,
the system’s unobservable directions become

Nz =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ng 012×2

−�Gp̂I1�Gg Az

−�Gp̂f �Gg Az

−Gg
1

Gd̂l

Gv̂ee
�
1
GR̂�

l Az

0 −e�3
GR̂�

l Az

−�Gp̂π�Gg Gn̂πe
�
3
GR̂�

πAz

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(62)

where Az =
[
I2 02×1

]�
. Clearly, only translation in z be-

comes observable, while different from the previous case of the
global x or y measurements, the rotation around the gravity
direction remains unobservable.

VII. ANALYSIS OF DEGENERATE MOTIONS

While it has been reported in [24], [26] that pure translation
and constant acceleration are degenerate for monocular VINS
with point features, in this section, we perform a comprehensive
study of degenerate motions for the aided INS with hetero-
geneous features. It is important to identify these degenerate
motions in order to keep estimators healthy. Unlike the previ-
ous work [26], we explicitly consider the extrinsic calibration
between the aiding sensor and IMU.

In particular, to ease our analysis, we use the range and
bearing parameterization (i.e., spherical coordinates) for the
point feature:

xf :=

⎡
⎢⎢⎣
rf

θ

φ

⎤
⎥⎥⎦ ⇒ rfbf = rf

⎡
⎢⎢⎣
cos θ cosφ

sin θ cosφ

sinφ

⎤
⎥⎥⎦=

⎡
⎢⎢⎣
xf

yf

zf

⎤
⎥⎥⎦ =: pf .

(63)
In this case (point features), the block row of the observability
matrix can be computed as [see (32)]

H
(p)
Ik

Φ(k,1) = Hproj,k
C
I R̂

Ik
G R̂

× [
Γ1 Γ2 Γ3 Γ4 −I3 b̂f

Gr̂f cos φ̂b̂
⊥
1

Gr̂f b̂
⊥
2

]
(64)

where

b̂⊥
1=

[− sin θ̂ cos θ̂ 0
]�

(65)

b̂⊥
2=

[− cos θ̂ sin φ̂ − sin θ̂ sin φ̂ cos φ̂
]�

. (66)

By inspection, the unobservable directions can be found as

Nrb=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ng 012×3

−�Gp̂I1�Gg I3

0 b̂�
f

g
1

Gr̂f cos φ̂

(
b̂⊥
1

)�

0
1

Gr̂f

(
b̂⊥
2

)�

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=:
[
Nrb,r Nrb,p

]

(67)

where Nrb,p and Nrb,r are the unobservable directions associ-
ated with the global translation and the global rotation around the
gravity direction, which, as expected, agrees with the preceding
analysis (34).

A. Pure Translation

Based on the above analysis of point measurements, we show
that given point, line, and plane measurements (49), if the sensor
undergoes pure translation, the system gains the following addi-
tional unobservable directions [by noting that the state vector (9)
includes the IMU state, one point in spherical coordinates (63),
one line, and one plane]:

NR =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I1
G R̂

03

−�Gv̂I1�
I1
G R̂�Gg�
−�Gp̂I1�

−Θ

−I3

01×3

−�Gpπ�

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(68)

where

Θ =

⎡
⎢⎢⎣

0 0 0

cos θ̂ tan φ̂ sin θ̂ tan φ̂ −1

− sin θ̂ cos θ̂ 0

⎤
⎥⎥⎦. (69)

Similar to [26], this unobservable direction can be easily verified
[see (50)]

H
(plπ)
Ik

Φ(k,1)NR =

⎡
⎢⎢⎢⎣

H
(p)
Ik

Φ(k,1)NR

H
(l)
Ik
Φ(k,1)NR

H
(π)
Ik

Φ(k,1)NR

⎤
⎥⎥⎥⎦ = 0. (70)
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Specifically, using (13) and (33), we can easily verify each block
row of (70) as follows:

H
(p)
Ik

Φ(k,1)NR = Hproj,k
C
I R̂

Ik
G R̂

(
Γ4

I1
G R̂− 1

2
δt2kI3

)
�Gg�

= 0

H
(l)
Ik
Φ(k,1)NR = Hl,k

∂ l̃′

∂CL̃

∂CL̃

∂I L̃

[
Ik
G R̂ 03

03 I3

]

×

⎡
⎢⎣

[
�Gv̂e�

(
Φ54

I1
G R̂+ 1

2δt
2
kI3

)
�Gg�−

�Gv̂e��Gp̂Ik� − ��Gp̂Ik�Gv̂e�+ �Gp̂Ik��Gv̂e�

]

�Gve� − �Gve�

⎤
⎥⎦

= 0

H
(π)
Ik

Φ(k,1)NR = Hπ,k

∂
[
C ñ�

π
C d̃l

]�

∂
[
I ñ�

π
I d̃l

]�
[

Ik
G R̂ 03×1

01×3 1

]

×

⎡
⎢⎢⎣
�Gn̂π� − 1

Gd̂π

(
I3 − Gn̂�

π
Gn̂π

) �Gp̂π�

−Gn̂�
π

(
Φ54

I1
G R̂+

1

2
δt2kI3

)
�Gg�

⎤
⎥⎥⎦ = 0

where we have also employed the following identities (a and b
are general 3× 1 vectors):

��a�b� = ba� − ab� (71)

�a��b� = ba� − a�bI (72)

Φ54
I1
G R̂ = −1

2
δt2kI3. (73)

We see from Θ that its first row corresponding to the range
of the point feature [see (63)] is filled with zeros, and thus
this unobservable direction (70) relates to the bearing of the
feature. Note also that the global rotation of the sensor becomes
unobservable, while only the global yaw is unobservable for
general motions [see (70) and (54)]. It is important to notice
that no assumption is made about the type of sensors used,
and thus, the aided INS with generic sensors (not including
global sensors) with pure translation will all gain additional
unobservable directions of NR.

B. Constant Local Acceleration

As it is not straightforward to have direct plane measure-
ments (24) for INS aided by a monocular camera, to ease our
analysis of VINS, from now on we focus on using only point
measurement (15) to verify the degenerate motion. In particular,
if the camera moves with constant local acceleration, i.e., Ia
is constant, then the system will have one more unobservable
direction given by

Na =
[
01×6

Gv̂�
I1

−I â� Gp̂�
I1

Gr̂fe
�
1

]�
. (74)

Since a monocular camera provides only bearing measurements,

Hproj,k = Hb,k =

[
C b̂�

⊥1,k

C b̂�
⊥2,k

]
, where C b̂⊥i,k (i = 1, 2) are or-

thogonal to C b̂f (see Appendix B). In this case, as shown in [26],
Γ4

Ia = Gp̂Ik − Gp̂I1 − Gv̂I1δtk. Thus, we have

H
(p)
Ik

Φ(k,1)Na

= Hb,k
C
I R̂

Ik
G R̂

(
−Gv̂I1δtk−Γ4

I â−Gp̂I1+
Gr̂f

Gb̂f

)

= Hb,k
C
I R̂

Ik
G R̂

(
Gp̂f−Gp̂Ik

)
= Hb,k

(
Ck p̂f − C p̂I

)
. (75)

In general, (75) will not be zero. However, for a practical aided
INS, the translation calibration CpI may be much smaller than
the feature range Ckpf , and thus we have

H
(p)
Ik

Φ(k,1)Na = Hb,k

(
Ck p̂f − C p̂I

) � Hb,k
Ck p̂f

(91)
= 0.

(76)

The above equity holds if ||Ckpf || � ||CpI ||. This analysis is
different from that of [24], [26] and provides the following two
insights:

1) The rigid transformation between the monocular camera
and IMU does affect the degenerate motion analysis.
In particular, the translation part CpI makes the scale
observable.

2) In practice, due to the compact sensor housing (||Ckpf || �
||CpI ||), constant acceleration may make the system
“close to” the unobservable direction Na.

C. Pure Rotation

If the sensor has only rotational motion, then GpIk = 03×1.
For monocular-camera-based point measurements (15), the
system will gain the following extra unobservable directions
corresponding to the feature scale:

Ns =
[
01×15

Grfe
�
1

]�
(77)

which can be seen as follows [see (75)]:

H
(p)
Ik

Φ(k,1)Ns = Hb,k
C
I R̂

Ik
G R̂Gp̂f

= Hb,k

(
Ck p̂f − C p̂I

) � 0 (78)

which holds only when ||Ckpf || � ||CpI ||.

D. Moving Toward Point Feature

With the point measurements (15), if the camera moves
straightly toward a point feature, the system will gain one more
unobservable direction related to the point scale (range)

N1 =
[
01×15 e�1

]�
. (79)

This degenerate motion indicates that the sensor is moving along
the point feature’s bearing direction, that is, GpIk = αGbf ,
where α denotes the scale of the sensor’s motion. Then, we
can arrive at

Ikpf =
Ikrf

Ikbf =
Ik
G R

(
Grf − α

)
Gbf . (80)

Authorized licensed use limited to: UNIVERSITY OF DELAWARE LIBRARY. Downloaded on May 22,2021 at 02:13:07 UTC from IEEE Xplore.  Restrictions apply. 



1410 IEEE TRANSACTIONS ON ROBOTICS, VOL. 35, NO. 6, DECEMBER 2019

TABLE II
SUMMARY OF DEGENERATE MOTIONS FOR AIDED INS

Similar to the case of pure rotation, we can verify the additional
unobservable direction N1 as follows [see (75)]:

H
(p)
Ik

Φ(k,1)N1 =
1

Gr̂f − α
Hb,k

C
I R̂

Ik p̂f

=
1

Gr̂f − α
Hb,k

(
Ck p̂f − C p̂I

) � 0. (81)

Again, the above equity holds only when ||Ckpf || � ||CpI ||.

E. Summary

As summarized in Table II, pure translation is degenerate
for all sensor types (without global measurements), causing the
system orientation unobservable, without any assumption of the
rigid transformation between the aiding sensor and IMU. The
other three degenerate motions will cause the scale to be un-
observable for the case of monocular camera (i.e., bearing-only
measurements). However, constant acceleration will cause the
whole system (e.g., position, velocity, acceleration bias, and fea-
tures) scale to be unobservable while pure rotation and moving
toward a feature will only make the feature scale unobservable.
We also want to stress that these three degenerate motions can
only be justified if ||Ckpf || � ||CpI || (which may often hold in
practice).

VIII. NUMERICAL VALIDATIONS

We have implemented both MSCKF-based VIO and VI-
SLAM with different features to validate our analysis (see [2],
[72]). In particular, the state vector of the VI-SLAM contains

x =
[
x�
I x�

c
Gx�

f

]�
(82)

xc =
[
I1
G q̄� Gp�

I1
· · · Im

G q̄� Gp�
Im

]�
(83)

where xc represents a fixed-size sliding window consisting of m
cloned IMU poses. The system propagation is similar to [67]. For
feature measurements with respect to a feature within a sliding
window, we can get

z = h
(
xc,

Gxf

)
+ n (84)

⇒ z̃ � Hxc
x̃c +Hxf

Gx̃f + n (85)

⇒ Q�
e z̃ = Q�

e Hxc
x̃c +Q�

e Hxf

Gx̃f +Q�
e n (86)

⇒ Q�
n z̃ = Q�

nHxc
x̃c +Q�

nn (87)

where Hxc
and Hxf

are the Jacobians with respect to the state
and the feature, respectively. Note that Hxf

= [Qe Qn][
RΔ

0 ].
If this feature is already in the state vector, we can use (86)
and (87) for standard EKF update. If this feature is observed

TABLE III
DEGENERATE MOTIONS FOR TRIANGULATING LINE FEATURES

USING BEARING-ONLY MEASUREMENTS

for the first time and Q�
e Hxc

is invertible, we can use an
efficient algorithm proposed in our previous work [9] for the
SLAM feature covariance initialization with (86). During the
implementation of MSCKF, we use null space operation [73]
to marginalize Gxf from the state vector and only use (87) for
efficient update.

A. Line Feature Triangulation

Within the MSCKF framework, we need to estimate the
feature’s state using the measurements in the sliding window.
Note that we do not need to triangulate plane features since we
assume a direct plane measurements while an efficient triangu-
lation of point features was developed in [2]. In this article, we
focus on sliding-window-based line feature triangulation, with
which the basic geometric elements (e.g., ve, ve and dl) for a
line feature will be determined. A collection of line segment
endpoint pairs for a line feature, pl, will be generated, when
it is detected and tracked over the sliding window. With these
measurements, we develop two triangulation algorithms detailed
in Appendix D. Based on the triangulation algorithms, we also
identify three degenerate motions for monocular camera that
the line feature triangulation might fail (see Table III). We
will avoid these degenerate motions when designing simulation
trajectories. After linear triangulation, nonlinear least-squares
are performed to refine the line estimates utilizing the collected
endpoint measurements.

We perform Monte–Carlo simulations to verify the proposed
line feature triangulation algorithms and the identified degener-
ate motions. Specifically, in simulation, eight lines were placed
about 2 m in front of the camera (see Fig. 2) and they were
observed by a monocular camera from 20 poses in space. Similar
to realistic line segment detector (LSD) [74], the simulated
monocular camera collected the two endpoint measurements of
lines in its view, with each endpoint measurement corrupted by
2 pixel Gaussian noises, while we assume no correspondences
between these endpoints. Three different camera motions (in-
cluding straight line motion, planar motion, and 3-D sinusoidal
motion) were simulated to verify the degenerate motions. During
triangulation, we corrupted the true camera poses (both the
orientation and position) with random noises

q̄m =

⎡
⎣
1

2
n(θ)

1

⎤
⎦⊗ q̄, pCm = pC + n(p) (88)

where n(θ) and n(p) are the white Gaussian noises added
to the camera pose estimates, while q̄m and pCm represent
the corrupted camera orientation and position estimates used
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Fig. 2. Simulation setup for linear line triangulation. Eight lines are simulated with IDs in the left figure. Three motion patterns are simulated, including (left)
straight line motion, (middle-left) 2-D planar motion, and (middle-right) 3-D motion. Note that 2-D planar motion is in the plane formed by the initial camera
position and line 5. On the far right, line triangulation RMSE (computed in CP form) across the Monte–Carlo simulations for the three tested motion profiles.

Fig. 3. Simulation setup for visual line SLAM (left). Average orientation and position RMSE for visual SLAM with line features in different representations
over the 30 Monte–Carlo simulation runs (right).

by the triangulation algorithms. When evaluating the trian-
gulation errors, we transformed the estimated line param-
eters into CP form and computed the errors in Euclidean
space.

For each motion profile, we generated 30 sets of data and
computed the root-mean-square error (RMSE) [75] for the line
accuracy evaluation (in CP form), with results shown in Fig. 2.
Specifically, since lines 1, 5, and 8 are horizontal lines, when
the camera performs straight line motion along this direction
(shown in Fig. 2 left), these line features cannot be accurately
triangulated. For the planar trajectory, the camera moved in the
same plane formulated by the camera center and line 5; therefore,
line 5’s triangulation still failed. For lines 1 and 8, their accuracy
was slightly improved over the 1-D motion case because this
planar motion is not strictly degenerate for them. Finally, in the
3-D motion case, all lines were successfully triangulated with
relatively low errors due to the fact that all degenerate cases were
avoided.

B. Comparing Line Feature Representations

It is interesting to compare the performance of different
line representations. To this end, we performed Monte–Carlo
simulations in a VI-SLAM scenario, in which a line map (with
64 lines in total) in an indoor room was generated while a
monocular camera was simulated to follow a sinusoidal tra-
jectory (150 poses were simulated in total), as shown in the
right of Fig. 3. To focus on evaluating feature representations,
we simulated relative pose odometry measurements for the

camera (which were also corrupted with pose noises (88)).
To evaluate the robustness of line representations, we used
three different noise levels (2, 6, and 8 pixels) to corrupt the
line endpoint measurements (as shown in the right of Fig. 3).
The camera traversed a single loop of this trajectory as shown
in the left of Fig. 3. We employed bundle adjustment (BA)
to solve this VL-SLAM problem [76], [77]. In this test, we
allowed five Gauss–Newton iterations for each representation
for a fair comparison. We ran 30 Monte–Carlo simulations and
computed the RMSE [78] for the camera poses to evaluate the
accuracy.

As shown in Fig. 3, all three representations yield similar
performances. However, as we increase the measurement noise
levels, the Plücker representation with orthonormal error states
tends to perform slightly worse than the others (e.g., the CP
and quaternion representations). Note that in all the noise levels
tested, the CP and quaternion line representations perform simi-
larly. These results suggest that one of these two representations
should be used in practice, in particular for low-cost sensors with
noisy measurements.

C. Monte–Carlo Simulation Results

To validate our observability analysis of aided INS us-
ing heterogeneous geometric features, we perform extensive
Monte–Carlo simulations of VINS,3 (i) VI-SLAM and (ii) VIO,

3Similar results as presented in this section would be expected if other aiding
sensors are used, for example, acoustic-aided INS was developed in our recent
work [12].
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Fig. 4. Monte–Carlo results of EKF-based VI-SLAM using different geometric features of points, lines, and planes.

TABLE IV
SIMULATION PARAMETERS

which are among the most popular localization technologies
in part due to their ubiquitous availability and complemen-
tary sensing modalities. To this end, we have adapted both
the MSCKF/SLAM hybrid system and MSCKF-based VIO
algorithms to fuse measurements of points, lines, planes, and
their different combinations. To the best of our knowledge,
algorithmically, we, for the first time, introduce and evaluate
the EKF-based VI-SLAM/VIO approaches with heterogeneous
features (which are common in structured environments). The
simulation parameters are given in Table IV.

In particular, we have compared two different EKFs in both
VI-SLAM and VIO: (i) the ideal EKF that uses true states
as the linearization points in computing filter Jacobians and
has been shown to have correct observability properties and
expected to be consistent, thus being used as the benchmark in
simulations as in the literature (e.g., [14], [15], [17], [19], [43]);

and (ii) the standard EKF that uses current state estimates as the
linearization points in computing filter Jacobians and has been
shown to be overconfident (inconsistent) [14], [15], [17]. The
metrics used to evaluate estimation performance are the RMSE
and the average normalized (state) estimation error squared
(NEES) [22]. The RMSE provides a measure of accuracy, while
the NEES is a standard criterion for evaluating estimator con-
sistency, which (implicitly) indicates the correctness of the EKF
system observability.

The simulated trajectories and different geometric features
are shown in the left side of Figs. 4 and 5, where we simulate a
camera/IMU sensor suite moving on the sinusoidal trajectories
to collect measurements of different features. For the results
in Fig. 4, we developed the EKF-based VI-SLAM algorithm,
which simultaneously preforms visual-inertial localization and
mapping by keeping different features in the state vector. In
contrast, for the results in Fig. 5, we adapted the MSCKF-based
VIO [2], which estimates only the sensor poses while marginal-
izing out different (not only points) features with null space
operation. It is clear from these results of both VI-SLAM and
VIO in Figs. 4 and 5 that the standard EKF/MSCKF performs
worse than the benchmark ideal filter, which agrees with the
literature (with point features only) [14], [15], [17]. This again
reflects the importance of system observability for consistent
state estimation.
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Fig. 5. Monte–Carlo results of MSCKF-based VIO using different geometric features of points, lines, and planes.

Fig. 6. The dimensions of the null space of the observability matrix (i.e.,
unobservable subspace) that are numerically computed during the simulation of
the ideal-EKF-based VI-SLAM with a single point, line, or plane feature.

D. Null Space Verification

Moreover, in order to directly validate the unobservable sub-
space of the aided INS found in our analysis, using the same
simulation setup as above but with a single feature, we have
constructed the observability matrix of the ideal EKF-based
VI-SLAM with a single point (or line or plane) and numerically
computed the dimension of its null space, which is shown in
Fig. 6. Clearly, the dimension of the unobservable subspace for
the (ideal) VI-SLAM with a single point (line or plane) is 4 (5
or 7), which agrees with our analysis.

IX. CONCLUSION

In this article, we performed observability analysis for aided
INS with different geometric features including points, lines,
and planes, which were detected from generic range and/or
bearing measurements, encompassing VINS as a special case.
As in practice, most aided INS estimators were built based on
the linearized systems, whose observability properties directly
impact the estimation performance, this article primarily focused
on observability analysis of the linearized aided INS with points,
lines, planes, and their combinations. In particular, in the case of
point features, we analytically showed that the aided INS (both
linearized and nonlinear) using generic range and/or bearing
measurements has four unobservable directions. In the case of
lines (planes), we prove that there exist at least five (or seven)
unobservable directions with a single line (plane) feature, and for
the first time, analytically derived the unobservable directions
for multiple lines and planes. We generalized this observability
analysis for linearized aided INS with different combinations
of point, line, and plane features and summarized important
results in Table V. Based on this analysis, we also systemat-
ically investigated the effects of global measurements on the
observability of aided INS, and found, as expected, that global
information improved the system observability. Moreover, we
identified several types of degenerate motions that negatively im-
pact the system observability and should be avoided if possible
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TABLE V
SUMMARY OF OBSERVABILITY ANALYSIS OF AIDED INS

(otherwise, extra sensors may be needed). To validate our anal-
ysis, we developed EKF-based VI-SLAM and MSCKF-based
VIO using heterogeneous geometric features of points, lines, and
planes, and evaluated their performance extensively in Monte–
Carlo simulations.

In the future, we will leverage the insights gained from this
observability analysis to design consistent estimators for aided
INS with different geometric features by enforcing proper ob-
servability constraints as in our prior work [23]. We will also
investigate the (stochastic) observability of aided INS under
adversarial attacks [79] or with unknown inputs [54] in order
to design secure estimators for robot navigation.

APPENDIX A
ERROR STATES OF CP LINE

The connection between the error state p̃l of a CP line and that
of the corresponding quaternion line [δθ�

l d̃l]
� can be computed

as [see (6)]

pl = p̂l + p̃l=
(
d̂l + d̃l

)
δq̄l ⊗ ˆ̄q=

(
d̂l + d̃l

)
R(ˆ̄q)

⎡
⎣
1

2
δθl

1

⎤
⎦

⇒ R(ˆ̄q)�(p̂l + p̃l) =

⎡
⎣
1

2
(d̂l + d̃l)δθl

d̂l + d̃l

⎤
⎦ �

⎡
⎣
1

2
d̂lδθl

d̂l + d̃l

⎤
⎦

⇒ R(ˆ̄q)�(p̂l + p̃l)−
[
0

d̂l

]
�
⎡
⎣
1

2
d̂lI3 0

0 1

⎤
⎦
[
δθl

d̃l

]

⇒
[
δθl

d̃l

]
�
⎡
⎣

2

d̂l
I3 0

0 1

⎤
⎦
(
R(ˆ̄q)�(p̂l + p̃l)−

[
0

d̂l

])

⇒
[
δθl

d̃l

]
�
⎡
⎣

2

d̂l
(q̂lI3 − �q̂l�) − 2

d̂l
q̂l

q̂�
l q̂l

⎤
⎦p̃l (89)

where R(·) is the right quaternion multiplication matrix [67].

APPENDIX B
BEARING MEASUREMENTS OF POINTS FOR A

MONOCULAR CAMERA

Geometrically, a monocular camera provides only bearing
information of a point feature, whose bearing measurement
model is given by

z(b) =

[
e�1

Cpf/e
�
3
Cpf

e�2
Cpf/e

�
3
Cpf

]
+ n(b) =

[
Cxf/

Czf

Cyf/
Czf

]
+ n(b)

(90)

where ei ∈ R3×1 (i = 1, 2, 3) are the canonical basis unit vec-
tors, i.e., [e1 e2 e3] = I3. As in [80], we use the following
bearing measurement model for a point feature:

z(b) = hb

(
Cpf ,n

(b)
)

=

[
Cb�

⊥1

Cb�
⊥2

]
Cpf + e�3

Cpf

[
Cb�

⊥1

Cb�
⊥2

][
I2

01×2

]
n(b)

(91)

whereCb⊥i, i ∈ {1, 2} are two orthogonal vectors to the bearing
vector Cbf , and can be easily constructed as in [80]. To obtain
the Jacobians, we linearize the model about the current estimate
of feature-to-camera relative position C p̂f as follows:

z̃(b) � Hb
C p̃f +Hnn

(b)

=

[
C b̂�

⊥1

C b̂�
⊥2

]
C p̃f + e�3

C p̂f

[
C b̂�

⊥1

C b̂�
⊥2

][
I2

01×2

]
n(b).

(92)

APPENDIX C
PROOF OF LEMMA 4

First of all, it is not difficult to verify that the null space
Nplπ1 corresponding to the rotation around the gravity direction.
What we need to verify is that Nplπ2:4 is in the unobservable
subspace. To this end, for simplicity, we write k-th block row of
the observability matrix as

H
(plπ)
Ik

Φ(k,1) =

⎡
⎢⎢⎢⎣

H
(p)
Ik

Φ(k,1)

H
(l)
Ik
Φ(k,1)

H
(π)
Ik

Φ(k,1)

⎤
⎥⎥⎥⎦ (93)

whereH(p)
Ik

,H(l)
Ik

, andH(π)
Ik

are the Jacobians with respect to the
IMU state and the point, line, and plane features, respectively.
We can easily verify the following:

H
(p)
Ik

Φ(k,1)Nplπ2:4 = 0 (94)

H
(l)
Ik
Φ(k,1)Nplπ2:4

GR̂l = 0 (95)

H
(π)
Ik

Φ(k,1)Nplπ2:4
GR̂π = 0. (96)

Similarly, since GR̂π and GR̂l are rotation matrices of full rank,
by left-multiplying both sides of (95) and (96) with GR̂�

π and
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Fig. 7. Sliding window-based line feature triangulation.

GR̂
�
l , respectively, we have

H
(l)
Ik
Φ(k,1)Nplπ2:4 = 0 (97)

H
(π)
Ik

Φ(k,1)Nplπ2:4 = 0. (98)

Thus, we reach: H(plπ)
Ik

Φ(k,1)Nplπ2:4 = 0.

APPENDIX D
LINE TRIANGULATION ALGORITHMS

A. Algorithm A

Denoting the endpoints for a line in the ith image in the
sliding window as xsi and xei (see Fig. 7), we obtain the normal
direction of the plane πi formed by the line L and the ith camera
center

Cinei =
�xsi�xei

||�xsi�xei|| . (99)

Since line L resides on every plane πi, we have the following
constraint:

⎡
⎢⎢⎢⎢⎣

...

Cin�
ei

C1

Ci
R�

...

⎤
⎥⎥⎥⎥⎦

︸ ︷︷ ︸
B

C1ve1 = 0. (100)

Therefore, C1ve1 can be found as the unit vector minimizing
the error on this constraint, which is given by the eigenvector
corresponding to the smallest eigenvalue of B�B.

The transformation of a line expressed in frame Ci to a
representation in frame C1 is given by
[

C1dl
C1ne1

C1ve1

]
=

[C1

Ci
R �C1pCi

�C1

Ci
R

03
C1

Ci
R

][
Cidl

Cinei

Civei

]

(101)

⇒ C1dl
C1ne1 − Cidl

C1

Ci
RCinei = �C1pCi

�C1

Ci
RCivei (102)

⇒ C1dlb
�
i
C1ne1 = b�

i �C1pCi
�C1

Ci
RCivei (103)

where bi = �C1ve1�C1

Ci
RCinei is a unit vector perpendicular to

C1

Ci
RCinei andC1ve1. Given all the measurements i = 2, . . . ,m,

we build a linear system as

C1dl

⎡
⎢⎢⎢⎢⎣

...

b�
i
C1ne1

...

⎤
⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎣

...

b�
i �C1pCi

�C1

Ci
RCivei

...

⎤
⎥⎥⎥⎥⎦
. (104)

By solving the above system, we obtain C1dl. After this step, we
have recovered each of the required line parameters:C1ne1(100),
C1ve1(101), and C1dl(104). Note that in our algorithm, we have
made no assumptions on the correspondences of the endpoints.

B. Algorithm B

One of the classical methods to triangulate line features is
based on the two intersecting planes (e.g., π1 and πi). The dual
Plücker matrix L∗ (see [81]) can be computed as

L∗ = π1π
�
i − πiπ

�
1 =

⎡
⎣ �C1v

(i)
e1 � C1d

(i)
l

C1n
(i)
e1

−C1d
(i)
l (C1n

(i)
e1 )

� 0

⎤
⎦

(105)

where π1 =
[
C1n�

e1 0
]�

and πi =
[
C1n�

ei
C1n�

ei
C1pCi

]�
.

C1d
(i)
l , C1n

(i)
e1 , and C1v

(i)
e1 represent the line geometric elements

computed based on π1 and πi. In this work, we offer a gener-
alization of this method for m measurements. In particular, we
solve for the line parameters using

C1ne1 =

m∑
i=2

C1n
(i)
e1

/∥∥∥∥∥
m∑
i=2

C1n
(i)
e1

∥∥∥∥∥ (106)

C1ve1 =

m∑
i=2

C1v
(i)
e1

/∥∥∥∥∥
m∑
i=2

C1v
(i)
e1

∥∥∥∥∥ (107)

C1dl =

∑m
i=2

C1d
(i)
l

m− 1
. (108)

C. Degenerate Motion Analysis for Line Triangulation

When using a monocular camera, the ability to perform line
feature triangulation is heavily dependent on the sensor motion.
In particular, we identify degenerate motions that cause the
line feature parameters to become unsolvable, thereby causing
triangulation to fail (see Table III and Fig. 8). Let C denote the
center of the camera frame and L the line feature, a plane π.
Formulating a plane π (in Fig. 8) with camera center C and line
L, we have the following remarks:

1) If the monocular camera moves along the direction ve of
L or toward L with direction �ve�ne, the camera stays in
the same plane, π. As a result, each of the Cinei will be
parallel to each other, causing ambiguity in the solution
for C1ve1, because the rank of matrix B in (101) becomes
1. In addition, without C1ve1, C1dl becomes unsolvable.
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Fig. 8. Degenerate motions for line feature triangulation.

2) If the monocular camera undergoes pure rotation (no
translation), the camera also stays in the plane π, causing
degeneracy as in the previous case.

3) The effective motion for line triangulation is the motion
along ne, which is perpendicular to the plane π.

Note that for a monocular camera, any combination of the
listed three degenerate motions will also cause triangulation
failure. Interestingly, for stereo cameras, if both cameras remain
in the plane during the motion (such as when the platform
translation and camera-to-camera offset remain in the plane), we
will still have degenerate motion. This is because triangulation
requires that we measure L from different views along ne.
In this case, even stereo vision cannot guarantee proper line
triangulation.
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