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Abstract— In this paper, we present a tightly-coupled monoc-
ular visual-inertial navigation system (VINS) using points and
lines with degenerate motion analysis for 3D line triangulation.
Based on line segment measurements from images, we propose
two sliding window based 3D line triangulation algorithms
and compare their performance. Analysis of the proposed
algorithms reveals 3 degenerate camera motions that cause tri-
angulation failures. Both geometrical interpretation and Monte-
Carlo simulations are provided to verify these degenerate mo-
tions which prevent triangulation. In addition, commonly used
line representations are compared through a monocular visual
SLAM Monte-Carlo simulation. Finally, real-world experiments
are conducted to validate the implementation of the proposed
VINS system using the “closest point” line representation.

I. INTRODUCTION AND RELATED WORK

Over the past decade, visual-inertial navigation systems
(VINS) have seen a great increase in popularity due to
their ability to provide accurate localization solutions while
utilizing only low-cost inertial measurement units (IMUs)
and cameras. The affordability, size, and light-weight nature
of these sensors make them ideal for deployments in a
wide-range of applications such as unmanned aerial vehicles
(UAVs) [1] and mobile devices [2].

When fusing camera and IMU data, a key question is how
to best to utilize the rich amount of information available in
the images. In particular, most VINS can be categorized by
whether they use indirect or direct image processing tech-
niques. Direct visual methods provide motion estimates by
minimizing costs involving the raw pixel intensities captured
by the camera [3, 4]. By contrast, indirect systems typically
extract geometric features from the pixels and track their
motion across the image plane with the most common being
points [5–7] and/or lines [8–13]. Point features correspond
to 3D positions in the space that are detected as “corners” on
the image plane. Lines, which are most commonly seen in
human-built environments, are detected as straight edges in
the image. Quite a few navigation works have been devoted
to utilizing both geometric features to achieve robust and
accurate estimation.

In particular, leveraging the multi-state constraint Kalman
filter (MSCKF) framework [5], Kottas et al. [8] proposed the
use of a unit quaternion with distance scalar to model a line
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and incorporate line features into visual-inertial odometry
(VIO). In addition, they provided an observability analysis
showing that VINS with a single line feature suffers from
5 unobservable directions. Later on, Kottas et al. [9] and
Guo et al. [14] proposed the utilization of line constraints
(e.g., parallel lines and vertical lines) to improve the esti-
mation accuracy in structured environments such as indoor
or Manhattan world, where all lines lay along the 3 major
directions. Yu et al. [11] designed a VINS system with line
features suitable for rolling-shutter cameras. Utilizing the
Plücker representation and orthonormal error states [15] for
lines, Heo et al. [12] implemented an invariant MSCKF with
point and line features using a Lie group representation of the
state. Zheng et al. [13] proposed representing a line with two
3D endpoints and designed a stereo visual-inertial navigation
system leveraging both points and lines. He et al. [10] used
IMU preintegration [16] to design a batch-optimization based
visual-inertial SLAM with point and line features, where line
features are represented in Plücker coordinates [17].

In many of these previous works, different representa-
tions for line features were used without considering their
impacts on estimator performance. Leveraging our previous
work [18], which offered a brief survey of line represen-
tations and proposed a “closest point” representation, in
this paper we conduct a performance evaluation for the
commonly used line parameterizations. In addition, we in-
vestigate and identify the degenerate motions for line feature
triangulation which cause poor line estimates and have large
practical impacts for monocular VINS which might leverage
line features. The main contributions of this paper can be
listed as follows:
• We present a tightly-coupled monocular visual-inertial

navigation system which leverages point and line fea-
tures and performs online spatial and temporal calibra-
tion.

• We propose two sliding window based line feature tri-
angulation algorithms and compare their performances.
We identify 3 degenerate motions that cause these line
triangulation methods to fail.

• We investigate commonly used line representations and
numerically compare their performances in a line fea-
ture based monocular visual-inertial SLAM scenario.

• Real-world experiments are performed to validate the
designed system with the CP line representation, and
the performances are shown to be improved than the
system using points only.

II. PROBLEM FORMULATION

In order to properly contextualize our line analysis, we
first formulate the standard visual-inertial odometry problem
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when using both point and line features. We define the state
vector for visual-inertial odometry as:

x =
[
x>I x>calib td x>c

]>
(1)

where xI denotes the IMU state, xcalib denotes the rigid
transformation between the IMU and camera, td represents
the time-offset and xc represents the cloned IMU states. At
time step k, the state vector can be written as:

xIk =
[

Ik
Gq̄> Ik b>g Gv>Ik

Ik b>a Gp>Ik
]>

(2)

where Ik
Gq̄ denotes JPL quaternion [19], representing the

rotation from global frame {G} to IMU frame {I} at time
step k. GvIk and GpIk represents the IMU velocity and
position in the global frame at time step k, respectively. Ik bg
and Ik ba represents the gyroscope and accelerometer biases.
We define the error states of the IMU state as:

x̃Ik =
[
δ

Ik
Gθ
> Ik b̃>g Gṽ>Ik

Ik b̃>a Gp̃>Ik
]>

(3)

where the error, x̃, is defined as the difference between
the true state, x, and estimated state x̂, that is x̃ := x− x̂.
However, for the JPL quaternion, the error state is defined
as δθ , where we have:

q̄ = δ q̄⊗ ˆ̄q'
[

1
2 δθ

> 1
]>
⊗ ˆ̄q (4)

with ⊗ denotes the quaternion multiplication [19].
In addition to this IMU navigation state, we also estimate

the spatial calibration, xcalib, between the IMU and camera.
In particular, our state vector contains the rotation from the
IMU frame to the camera frame, C

I q̄, as well as the translation
from camera to IMU CpI . Explicitly, we have:

xcalib =
[

C
I q̄> Cp>I

]>
(5)

Moreover, due to the nature of electronic hardware (e.g.,
asynchronous clocks, data transmission delays and electronic
triggering delays), the timestamps reported by each of the
sensors will differ from the “true” time that the measure-
ments were recorded. In this work, we treat the IMU clock
as the true time and estimate the offset of the aiding sensor
relative to this base clock [20, 21]. We model the time offset
td as a constant value:

td = tC− tI (6)

where tC is the time recorded on the sensor measurements,
and tI is the corresponding true IMU time.

If there are m cloned IMU poses at the time step k
(corresponding to the poses of the IMU at the true imaging
times), then xck can be written as:

xck =
[

Ik−1
G q̄> Gp>Ik−1

· · · Ik−m
G q̄> Gp>Ik−m

]>
(7)

A. System Dynamic Model

The local linear acceleration a and angular velocity mea-
surements ω are modeled with additive noises and biases:

am = a+ I
GRGg+ba +na (8)

ωm = ω +bg +ng (9)

where ng and na are the continuous-time Gaussian noises
that contaminate the IMU readings. The dynamic model for
this system is given by [19]:

I
G ˙̄q(t) =

1
2

Ω

(
I
ω(t)

)
I
Gq̄(t), GṗI(t) = GvI(t), Gv̇I(t) = Ga(t)

ḃg(t) = nwg, ḃa(t) = nwa(t), ṫd = 0
ẋcalib(t) = 06×1, ẋc(t) = 06m×1 (10)

where nwg and nwa denote the zero-mean Gaussian noises
driving the IMU gyroscope and accelerometer biases, Gg
denotes gravity, b·c represents the skew matrix, Ω(ω) ,[
−bωc ω

−ω> 0

]
and continuous time variable x(t) denotes the state

value at time t. After linearization, the error state dynamic
equation are:

˙̃x(t)'

[
FI(t) 015×(6m+7)

0(6m+7)×15 0(6m+7)

]
x̃(t)+

[
GI(t)

0(6m+7)×12

]
n(t)

= F(t)x̃(t)+G(t)n(t) (11)

where FI(t) and GI(t) are the continuous-time IMU error
state and noise Jacobians matrices, respectively, and n(t) =
[n>g n>wg n>a n>wa]

> represents the system noises modeled
as a zero-mean white Gaussian process with autocorrelation
E[n(t)n>(t)] = Qδ (t− τ).

To propagate the covariance Pk|k at time step k, the
state transition matrix Φ(k+1,k) from time tk to tk+1 can be
computed by solving Φ̇(t,k) = F(t)Φ(t,k) with identity initial
conditions. Thus, the discrete-time noise covariance and the
propagated covariance can be written as:

Qk =
∫ tk+1

tk
Φ(k+1,τ)G(τ)QG>(τ)Φ>(k+1,τ)dτ (12)

Pk+1|k = Φ(k+1,k)Pk|kΦ
>
(k+1,k)+Qk (13)

B. Point Measurement Model
As the camera moves through an environment, point

feature measurements can be extracted and tracked between
images. These camera measurements are described by:

zp = Π(Cxp)+n f , Π([x y z]>) =
[

x
z

y
z

]>
(14)

where Cxp represents the 3D position of the point feature
expressed in the camera frame. According to our time offset
definition (6), the feature Cxp in the sensor frame with
reported time stamp t corresponds to the time t− td in the
IMU base clock. Hence, we have:

Cxp =
C
I RI

GR(t− td)
(

Gxp−GpI(t− td)
)
+CpI (15)

where I
GR(t− td) and GpI(t− td) represent the IMU pose at

time t−td , which will be denoted as time step k for simplicity
in the ensuing derivations.

C. Line Measurement Model
Similar to [15], we adopt a simple projective line mea-

surement model which describes the distance of two line
endpoints, xs = [us vs 1]> and xe = [ue ve 1]>, to the projected
line segment in the image:

zl =

[
x>s l√
l2
1+l2

2

x>e l√
l2
1+l2

2

]>
(16)
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where (u,v) are the coordinates of the point on the image
plane, while l = [l1 l2 l3]> is the 2D image line projected
from the 3D line Cxl expressed in the camera frame.

D. Multi-State Constraint Kalman Filter (MSCKF)
Each feature measurement, whether it be a point (14) or

line measurement (16), can be written generically as:

z = h
(

x,Gx f

)
+nz (17)

where Gx f represents the feature (either a point Gxp, or line
Gxl). If Gx f is kept in the state vector, the problem size
(and thus the computational burden) will grow unbounded,
quickly preventing real-time estimation. One way to avoid
this is to use a null space operation [22] to marginalize these
features.

To perform this, the MSCKF maintains a sliding window
of stochastically cloned historical IMU poses corresponding
to past imaging times in the state vector, and accumulates
the corresponding feature measurements collected over this
window. In our implementation, we clone these poses at the
“true” imaging times in order to estimate the time offset as
in [20]. By stacking the measurements corresponding to a
single feature and using the current estimates of the IMU
clones in the sliding window, we can triangulate this feature
to form its estimate, Gx̂ f . The feature measurement (17) can
then be linearized as:

z̃'Hxx̃+H f
Gx̃ f +nz (18)

where Hx and H f represent the Jacobians w.r.t. the state x and
feature, respectively. Decomposing H f with QR factorization
gives the following:

H f =
[
Qe Qn

][R∆

0

]
= QeR∆ (19)

Note that Q>n is the left null space of H f , i.e., Q>n H f = 0.
Multiplying (18) to the left by Q>n yields a new measurement
model independent of the feature error:

z̃′ 'H′xx̃+n′z (20)

As this new measurement relates only to quantities already
contained in the state vector, the standard EKF update can
be performed. Utilizing this null space operation for every
feature tracked over the sliding window keeps the problem
size (and thus the computational cost) bounded.

III. LINE REPRESENTATION AND JACOBIANS

A. Line Representation
In order to incorporate line measurements into the estima-

tor, we need to find an appropriate representation for these
features.

In our previous work [18], we summarized several line
error representations (including orthonormal, quaternion, and
closest point) shown in Table I and Figure 1a.

Note that q̄l is a unit quaternion and q̄l = [q>l ql ]
>. Given

the 3D positions of two points pf1 and pf2 (expressed in the
same frame) corresponding to the same line xl , we can obtain
its Plücker coordinate (Model 1 in Table I) as [15, 23]:[

nl
vl

]
=

[
bpf1cpf2
pf2−pf1

]
(21)

TABLE I: Line representation and corresponding error states

Model # Line Error states
1: Orthonormal nl , vl δθ l , δφl

2: Quaternion dl , q̄l with
R(q̄l) = [ne,ve,bnecve]

δθ l , d̃l

3: Closest Point (CP) pl = dl q̄l pl = p̂l + p̃l

where nl represents the normal direction of the plane con-
structed by the two points and the origin while vl represents
the line direction. The distance from the origin to the line
can be computed as dl =‖nl‖/‖vl‖. A minimal orthonormal
error state (δθ l and δφl) is introduced by [15] for line
feature-based structure from motion (SfM). Based on Model
1, we can conclude the basic geometric elements of a line,
including a unit normal direction ne = nl

‖nl‖
, a unit line

direction ve =
vl
‖vl‖

, and the distance scalar dl (see Fig. 1a).
With these geometric elements, Kottas et al. [8] proposed

the use of a unit quaternion q̄l and a distance scalar dl to
represent a line (Model 2), where the quaternion describes
the line direction:

R(q̄l) =
[
ne ve bnecve

]
, q̄l '

[
1
2 δθ l

1

]
⊗ ˆ̄ql (22)

where δθ l represents the error state of the line quaternion,
while R(q̄l) refers to the rotation matrix associated with q̄l .
The 4D minimal error states of the line include the quater-
nion error angle and the distance scalar error: [δθ

>
l d̃l ]

>.
More importantly, if we multiply the unit quaternion q̄l

with the distance scalar dl , we obtain a 4D vector, which
can be considered as the “closest point” for a line in the 4D
vector space (i.e., Model 3):

pl = dl q̄l = dl

[
q>l ql

]>
= p̂l + p̃l (23)

where p̃l is the 4D error state for the closest point of a line.
In this paper, we will compare the performance of these line
representations within a SfM framework.

B. Line Measurement Jacobians

We use the CP representation to show how to compute the
measurement Jacobians for line measurements (16). For the
line projection in CP form, we have the following equalities:

l = [K 03]
CL, CL =

[
Cdl

Cn>e Cv>e
]>

(24)

CL =

[
C
I R bCpIcCI R
03

C
I R

][
I
GR(t− td) −I

GR(t− td)bGpI(t− td)c
03

I
GR(t− td)

]
GL (25)

Therefore, the measurement Jacobians can be written as:

∂ z̃
∂ Gp̃I

=
∂ z̃
∂ l̃

∂ l̃
∂CL̃

∂CL̃
∂ IL̃

∂ IL̃
∂ Gp̃I

(26)

∂ z̃
∂δθ I

=
∂ z̃
∂ l̃

∂ l̃
∂CL̃

∂CL̃
∂ IL̃

∂ IL̃
∂δθ I

(27)

∂ z̃
∂ x̃calib

=
∂ z̃
∂ l̃

∂ l̃
∂CL̃

∂CL̃
∂ x̃calib

(28)

∂ z̃
∂ Gp̃l

=
∂ z̃
∂ l̃

∂ l̃
∂CL̃

∂CL̃
∂ IL̃

∂ IL̃
∂ [δθ

>
l d̃l ]>

∂ [δθ
>
l d̃l ]

>

∂ Gp̃l
(29)

Please refer to Appendix I for detailed derivations.
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(a) (b) (c)

Fig. 1: Basic geometric elements for a 3D line (a). Sliding window-based line feature triangulation (b). Degenerate motion
analysis for line feature triangulation (c).

IV. LINE TRIANGULATION

In order to utilize line features in the MSCKF, an estimate
of its 3D line parameters is needed to linearize the measure-
ment model (17). From the above section, it is clear that we
need the basic geometric elements (e.g., ve, ve and dl) for a
line feature.

Image line detectors such as Line Segment Detector (LSD)
[24] extract two arbitrary endpoints of the line segment
in each image. Consider line feature, xl , which has been
detected and tracked over the sliding window, yielding a
collection of line segment endpoint pairs, we propose two
algorithms for line feature triangulation based on these
stacked endpoint measurements.

A. Algorithm A

Denoting the endpoints for a line in the i-th image in the
sliding window as xsi and xei, see Figure 1b, we obtain the
normal direction of the plane πi formed by the line xl and
the i-th camera center:

Cinei =
bxsicxei∥∥bxsicxei

∥∥ (30)

Since line xl resides on every plane πi, we have the following
constraint: 

...
Cin>ei

C1
Ci

R>
...


︸ ︷︷ ︸

N

C1ve1 = 0 (31)

Therefore, C1ve1 can be found as the unit vector minimizing
the error on this constraint, which is given by the eigenvector
corresponding to the smallest eigenvalue of N>N.

The transformation of a line expressed in frame Ci to a
representation in frame C1 is given by:[

C1dl
C1ne1

C1 ve1

]
=

[
C1
Ci

R bC1pCic
C1
Ci

R
03

C1
Ci

R

][
Cidl

Cinei
Civei

]
(32)

⇒ C1dl
C1ne1−Cidl

C1
Ci

RCinei = bC1pCic
C1
Ci

RCivei (33)

⇒ C1dlb>i
C1ne1 = b>i bC1pCic

C1
Ci

RCivei (34)

where bi = bC1ve1cC1
Ci

RCinei is a unit vector perpendicular to
C1
Ci

RCinei. Given all the measurements from i = 2 . . .m, we
build a linear system as:

C1dl


...

b>i C1ne1
...

=


...

b>i bC1pCic
C1
Ci

RCivei
...

 (35)

By solving the above system, we obtain C1dl . After this step,
we have recovered all the required line parameters: C1ne1 eq.
(30), C1ve1 eq. (32) and C1dl eq. (35). The triangulated 3D
line feature can be transformed to other frames (i.e. global
frame G) as needed. Note that this is a generic algorithm
and we have made no assumptions on the correspondences
of the endpoints.

B. Algorithm B

One of the classical methods to triangulate line features is
based on the two intersecting planes (e.g., π1 and πi). The
dual Plücker matrix L∗ can be computed as:

L∗ = π1π
>
i −πiπ

>
1 =

[
bC1v(i)e1c C1d(i)

l
C1n(i)

e1

−C1d(i)
l (C1n(i)

e1 )
> 0

]
(36)

where π1 = [C1n>e1 0]> and πi = [C1n>ei
C1n>ei

C1pCi ]
>. The

line geometric elements C1d(i)
l , C1n(i)

e1 and C1v(i)e1 are computed
based on π1 and πi. In this work, we offer a generalization
of this method for m measurements. In particular, we solve
for the line parameters using:

C1ne1 =
m

∑
i=2

C1n(i)
e1/

∥∥∥∥∥ m

∑
i=2

C1n(i)
e1

∥∥∥∥∥ (37)

C1ve1 =
m

∑
i=2

C1v(i)e1/

∥∥∥∥∥ m

∑
i=2

C1v(i)e1

∥∥∥∥∥ (38)

C1dl =
∑

m
i=2

C1d(i)
l

m−1
(39)

After linear triangulation, we perform nonlinear least squares
to refine the line estimates, noting again that we have made
no assumption of the endpoint correspondences.
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C. Degenerate Motion Analysis for Triangulation

When using a monocular camera, the ability to perform
line feature triangulation is heavily dependent on the sensor
motion. In particular, we identify degenerate motions that
cause the line feature parameters to become unobservable,
thereby causing triangulation failures (see Fig. 1c and Tab.
II). Letting C denote the center of the camera frame and L is
the line feature and formulate a plane π as shown in Fig. 1c.
• If the monocular camera moves along the direction ve

of L or toward L with direction bvecne, the camera
will stay in the same plane, π . As a result, each of the
Cinei will be parallel to each other, causing matrix N
in (32) to become rank 1, thereby causing ambiguity in
the solution for C1ve1. In addition, without C1ve1, C1dl
becomes unsolvable.

• If the monocular camera undergoes pure rotation (no
translation), the camera will also stay in the plane π ,
causing degeneracy as in the previous case.

• The effective motion for line triangulation is the motion
ne perpendicular to the plane π as the shown in Fig 1c.

Note that for a monocular camera, any combination of the
listed 3 degenerate motions (e.g., planar motions in plane π

shown in Fig. 1c) will also cause triangulation failure.
Interestingly, we see that for stereo cameras, if both

cameras remain in the plane during the motion (such as when
the platform translation and camera to camera offset remain
in the plane), we will still have degenerate motion. This
is because triangulation requires that we measure L from
different views along ne. In such a case, even stereo vision
cannot guarantee proper line triangulation.

TABLE II: Summary of degenerate motion for line feature
triangulation with monocular camera

Motion Solvable Unsolvable
Along line direction ve ne ve and d
Toward line bvecne ne ve and d
Pure rotation ne ve and d
Perpendicular to plane ne ne,ve and d -
Random motion ne,ve and d -

V. SIMULATIONS

We performed two Monte-Carlo simulations to verify the
proposed line feature triangulation algorithms and different
line representations.

A. Line Triangulation Simulation

We first used Monte-Carlo simulations to verify both
the proposed sliding-window based line feature triangulation
algorithms and our degenerate motion analysis. 8 lines were
generated (see Fig. 2) and observed by a monocular camera
from 20 poses in space, with the lines being placed about
2m in front of the poses. Similar to the real-world line
segment detector (LSD), our simulated monocular camera
collected the two endpoint measurements of lines in its
view, with each endpoint bearing measurement corrupted
by 2-pixel Gaussian random noise, while we assume no
correspondences between these endpoints. 3 different camera

motions (including straight line motion, planar motion and
3D sinusoidal motion) were simulated to verify the degen-
erate motions. During triangulation, we disturbed the true
camera poses (both the orientation and position) with random
noises as:

q̄m =

[
1
2 nθ

1

]
⊗ q̄, pCm = pC +np (40)

where nθ and np represents the white Gaussian noises
added to the camera pose estimates, with σθ = 0.01rad and
σp = 0.005m, respectively. while q̄m and pm represent the
disturbed camera orientation and position estimates which
were used by the triangulation algorithms. When evaluating
the triangulated line errors, we transferred the estimated
line parameters into CP form and computed the errors in
Euclidean space.

For each motion profile we generated 30 sets of data and
computed the root mean square error (RMSE) [25] for the
line accuracy evaluation. As shown in Fig. 2, we see that
for all the tested motion patterns, the proposed Algorithm
A outperformed Algorithm B. Since lines 1, 5 and 8 are
horizontal lines, when the camera performs straight line
motion along this direction (shown in Fig. 2 left), their
estimates can not be accurately triangulated. For the planar
trajectory, the camera moved in the same plane formulated by
the camera center and line 5, therefore, line 5’s triangulation
still failed. For lines 1 and 8, their accuracy was slightly
improved over the 1D motion case because this planar motion
is not strictly degenerate for them. Finally, in the 3D motion
case, all lines were successfully triangulated with relatively
low error due to the fact that all degenerate cases were
avoided.

B. Line Representation Simulation
When fusing line information into any estimator, it is

vital to be able to determine which of those possible line
representations yields the best performance. In order to test
the effect of line representation choice, we performed a
Monte-Carlo simulations using a visual line-SLAM system.
A line map (64 lines in total) in an indoor room was
generated while a monocular camera was simulated to follow
a sinusoidal trajectory ( with 150 simulated poses), as shown
in the right of Fig. 3.

To simplify the simulation, we simulated relative pose
odometry measurements for the camera (which were also
disturbed with pose noises (40)). In order to test the robust-
ness of the line representations, we performed tests using 3
different image ise levels (2, 6 and 8 pixels) to corrupt the
line endpoint measurements (as shown in the right of Fig. 3).
To simplify the simulation, the camera traversed a single loop
of this trajectory as shown in the left of Fig. 3. The line
features were triangulated using proposed Algorithm A. To
solve the visual line-SLAM problem, we formulated it as a
Maximum Likelihood Estimation (MLE) problem which can
be computed as an instance of Nonlinear Least Squares [26].
In this simulation, we allowed 5 Gauss-Newton iterations for
each representation for a fair comparison. We ran 30 Monte-
Carlo simulations and computed the RMSE for the camera
poses to evaluate the accuracy.
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Fig. 2: Simulation setup for line triangulation. 8 lines are simulated with IDs in the left figure. 3 motion patterns are
simulated, including (left) straight line motion, (middle-left) 2D planar motion and (middle-right) 3D motion. Note that 2D
planar motion is in the plane formed by the initial camera position and line 5. On the far right, line triangulation RMSE
(computed in CP form) across the Monte-Carlo simulations for the three tested motion profiles.

Fig. 3: Simulation environmental setup for visual line-SLAM (left). Average orientation and position RMSE for visual SLAM
with line features in different representations over the 30 Monte-Carlo simulation runs (right).

As shown in Fig. 3, all 3 representations gave similar
SLAM performance. However, as we increase the measure-
ment noise levels, the Plücker representation with orthonor-
mal error states tends to perform slightly worse than the
others (e.g., the CP and quaternion representations). Note
that in all the noise levels tested, the CP and quaternion line
representations yielded similar performance. These results
indicate that one of these two representations should be used
in practice, in particular for low-cost visual sensors which
display a large amount of noise.

VI. EXPERIMENTS

For our real-world experiments, we implemented the pro-
posed triangulation and MSCKF line feature update. A sparse
point feature pipeline first extracts FAST [27] features which
are then tracked frame to frame using KLT [28], after which
8-point RANSAC is used to reject outliers. For the line
segments, we leverage the Line Segment Detector (LSD)
[24] implementation within OpenCV [29] to detect lines
and extract their descriptors using Line Band Descriptors
(LBD) [30]. Incoming grayscale monocular images are first
undistorted to allow for extraction of straight line segments
in the image plane. We found that that we were able to
robustly match lines without RANSAC by first matching
using a knn-matcher [29]. We additionally enforced that
extracted lines had “significant” length to prevent noisy

TABLE III: Average absolute trajectory error for the different
Euroc Mav datasets. Averaged over 25 runs, both orientation
and position errors are reported.

Algorithm V1 01 V1 02 V1 03 V2 01 V2 02

MSCKF (deg) 6.663 1.675 1.557 1.529 1.930
(m) 0.154 0.114 0.186 0.121 0.137

MSCKF
w/ Lines

(deg) 6.582 1.656 1.957 1.324 1.710
(m) 0.149 0.119 0.139 0.096 0.117

TABLE IV: Relative pose error for different segment lengths.
Units for orientation and position errors are in degrees and
meters respectively.

Segment
Length

MSCKF
Ori.

MSCKF
Pos.

MSCKF w/
Lines Ori.

MSCKF w/
Lines Pos.

8m 1.1688 0.1244 1.1181 0.1155
16m 1.4193 0.1531 1.3238 0.1410
24m 1.4355 0.1667 1.3643 0.1533
32m 1.7254 0.1963 1.5318 0.1768
40m 1.9270 0.2292 1.7210 0.2020

detections of small line segments. The line detection within
OpenCV is the major bottleneck for processing time within
the estimator, and limits the processing frame rate to 15 Hz,
while the point-only MSCKF can run up to 50 Hz on an
Intel Xeon E3-1505Mv6 with 3.00GHz.

We validated the designed system on the Vicon room
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Fig. 4: Boxplot of the relative trajectory error statistics. The
middle box spans the first and third quartiles, while the
whiskers are the upper and lower limits. Plot best seen in
color.

Fig. 5: Example tracking Euroc Mav datasets [31] for both
point features (left) and line tracks (right). A history of tracks
has been overlaid for each point/line in the image.

Euroc Mav datasets [31]. The Euroc Mav datasets provide
stereo greyscale images at 20Hz, of which we only use the
left image for our monocular system, a 200Hz ADIS16448
IMU, and Vicon groundtruth trajectories. Each dataset has a
dynamic aerial trajectory, of average length of 70 meters, that
each exhibit varying degrees of motion blur and textureless
regions, making it a challenging scenario for VINS. We
tracked 100 sparse feature points, while we tracked around
20 lines in each frame (Figure 5 shows example extracted
image) with a sliding window size of 15 poses. Lines that
have been lost or reached the maximum window size are
first triangulated using the method proposed in Section IV-
A, after which they are used to update the state following
Section II-D. We found that in most of these datasets we had
around 4 lines at each timestep that can be used in update.

Shown in Table III, we calculated the average absolute
trajectory error (ATE) [32] for the proposed method and the
standard MSCKF [5] for each of the Vicon room datasets.
We found that due to the extreme image blur and motion
we were unable to run both our standard MSCKF and the
proposed on the V2 03 dataset and thus do not report its
result. The average ATE is calculated over 25 runs to account
for the randomness in the feature frontends. It is clear that
the proposed point and line-aided MSCKF is able to either
match the performance of the standard point MSCKF or
in most cases outperform it in terms of orientation and
position accuracy. This is due to the inclusion of additional
pose constraints from the free line measurements into the
estimator.

We further evaluated the proposed method by looking at
the relative pose errors (RPE) [32] in Figure 4 and Table IV.
This RPE is calculated over all dataset runs and thus shows
the accuracy and variance for different distance segment
lengths. It is clear that adding lines consistently decreases
both the orientation and position error as the segment length
grows. It is interesting that as the segment length grows, the
difference in position accuracy also grows.

A. Remarks

It should be pointed out that, we empirically found that
there are a few cases where the inclusion of free line features
in VIO does not improve the estimation performance much,
as shown in the V1 02 and V1 03 datasets. This is likely
due to three key issues inherent to line features: (i) structure
of the explored environment, (ii) motion of the monocular
camera relative to the features, (iii) and poor visual line track-
ing. Through our experiments, we saw that free-line tracking
and estimates of unstructured environments will be of low
quality and provide little information to the estimator. We
also found that line triangulation and estimation can suffer
if the VIO platform traveled in the degenerate directions (see
Table II), and these degenerate motions may often occur for
free lines. To address these issues in the future, we will adopt
long-term robust line features into our VIO state, avoid these
degenerate triangulation cases and leverage the loop-closure
properties of lines.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we designed a tightly-coupled monocular
visual-inertial navigation system using point and line fea-
tures with online spatial and temporal calibration. We also
proposed two sliding window based 3D line triangulation
algorithms and compared their performances. Based on the
proposed algorithms, we identified 3 degenerate motions
for monocular camera that cause the line triangulation to
fail and validated their existence through simulation. Monte-
Carlo simulations with a visual line SLAM setup were also
performed to compare commonly used line feature repre-
sentations, and the results showed that the CP and quater-
nion representations performed better than the orthonormal
representation in scenarios with high measurement noises.
Finally real world experiments were performed to verify
the implemented system using the CP line representation.
In the future we plan to investigate inverse depth line
representations, different line outlier rejection methods, and
feature constraints (e.g., parallel lines, point-on-lines, etc.).

APPENDIX I
LINE MEASUREMENT JACOBIANS

The jacobians for the CP line measurements are as follows:

∂ z̃l

∂ l̃
=

1
ln

[
u1− l1e1

ln2 v1− l2e1
ln2 1

u2− l1e2
ln2 v2− l2e2

ln2 1

]
(41)

∂ l̃
∂CL̃

=
[
K 03

]
, K =

 fv 0 0
0 fu 0
− fvcu − fucv fu fv

 (42)
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∂CL̃
∂ IL̃

=

[
C
I R̂ bCp̂IcCI R̂
03

C
I R̂

]
(43)

where e1 = l>x1, e2 = l>xe. K is the projection matrix for
line features, fu, fv, cu and cv are the corresponding camera
intrinsic parameters.

IL̃
GL̃

=

[
I
GR̂ −I

GR̂bGp̂Ic
03

I
GR̂

]
(44)

∂CL̃
∂ x̃calib

=

[
I d̂lbCI R̂I n̂ec+ bCp̂IcbCI R̂I v̂ec −bCI R̂I v̂ec

bCI R̂I v̂ec 03

]
(45)

The Jacobians w.r.t. the pose can be written as:

∂ IL̃
∂δθ I

=

[
Gd̂lbIGR̂Gn̂ec−bIGR̂bGp̂IcGv̂ec

bIGR̂Gv̂ec

]
(46)

∂ IL̃
∂ Gp̃I

=

[
I
GR̂bGv̂ec

03

]
(47)

The Jacobians w.r.t. the CP line features can be written as:

∂ GL̃
∂ [δθ

>
l d̃l ]>

=

[
Gd̂lbGR̂le1c GR̂le1
bGR̂le2c 03×1

]
(48)

∂ [δθ
>
l d̃l ]

>

∂ Gp̃l
=

[
2
d̂

(
q̂lI3−bq̂lc

)
− 2

d̂
q̂l

q̂>l q̂l

]
(49)
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