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Abstract— Extending our recent work [1] that focuses on the
observability analysis of aided inertial navigation systems (INS)
using homogeneous geometric features including points, lines
and planes, in this paper, we complete the analysis for the
general aided INS using different combinations of geometric
features (i.e., points, lines and planes). We analytically show
that the linearized aided INS with different feature combi-
nations generally possesses the same observability properties
as those with same features, i.e., 4 unobservable directions,
corresponding to the global yaw rotation and the global position
of the sensor platform. During the analysis, we particularly
propose a novel minimal representation of line features, i.e.,
the “closest point” parameterization, which uses a 4D Euclidean
vector to describe a line and is proved to preserve the same
observability properties. Based on that, for the first time, we
provide two sets of unified representations for points, lines and
planes, i.e., the quaternion form and the closest point (CP) form,
and perform extensive observability analysis with analytically-
computed Jacobians for these unified parameterizations. We
validate the proposed CP representations and observability
analysis with Monte-Carlo simulations, in which EKF-based
vision-aided INS (VINS) with combinations of geometrical
features in CP form are developed and compared.

I. INTRODUCTION AND RELATED WORK

Inertial navigation systems (INS) have become ubiquitous
and found their ways in many application domains from aug-
mented reality to autonomous navigation. However, low-cost
inertial measurement units (IMUs) suffer from non-negligible
measurement noises and time-varying biases. Pose estimation
solely based on IMU measurements (angular velocity and
linear acceleration) will result in large errors in a short period
of time. For this reason, great efforts have been devoted to
INS aided with additional sensors such as camera [2] and
sonar [3], in order to achieve higher localization accuracy.

As low-cost and light-weight optical cameras are one of
the ideal aiding sources for INS, many different state estima-
tion algorithms for vision-aided INS (VINS) have been de-
veloped (e.g., [4]–[10] and references therein). Among them,
extended Kalman filter (EKF)-based methods are among
the most popular algorithms, such as multi-state constrained
Kalman filter (MSCKF) [2], observability constrained (OC)-
EKF [4], [11], right invariant error (RI)-EKF [12].

System observability plays important roles for state esti-
mation [13]. First of all, understanding a system obsevability
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provides a deep insight about the system’s geometrical
properties [4], [14], [15] and determines the minimal mea-
surement modalities or state parameters needed to initialize
an estimator. Secondly, it can be used to identify degen-
erate motions [1], [16] that cause additional unobservable
directions and should be avoided or alerted in real-world
applications. Thirdly, the observability-based methodologies
used in OC-EKF [11] and OC-VINS [4] that enforce the
correct observability properties, can be adopted to improve
estimation consistency. Last but not least important, analyti-
cal measurement Jacobians for aided INS estimators, can be
verified through the observability analysis process.

For these reasons, in the past decade, significant research
efforts have been devoted on the observability analysis for
INS. Among them, Martinelli [17] has proved that biases,
velocity, and roll and pitch angles in VINS are observ-
able, while Hesch et al. [4] and Kottas et al. [18] have
analytically derived the observability matrix for linearized
VINS and shown that there are 4 unobservable directions
for VINS with point features. However, the vast majority
of VINS estimators and their related observability analysis
have focused only on point features, albeit using line [19]–
[23] and plane [24]–[27] features has recently been reviving.
Different parameterizations of line features in VINS have
been considered. A unit quaternion with a distance scalar
to represent line features was used in VINS [20] where
observability analysis for linearized VINS with lines was also
performed. Plücker representation with orthonormal error
states for lines [28] were adopted in point and line based
VINS [21], [22]. Two ending points of line segment to
represent line features were used in recent point/line-based
MSCKF [23]. On the other hand, plane features were also
exploited in recent SLAM and VINS systems. For example,
the VINS observability with point features and plane features
with known orientation was studied in [25], and the 2D
LiDAR aided INS (L-INS) was also developed by estimating
the perpendicular structural planes within structured build-
ings [24]. The dense planar visual-inertial SLAM system
has recently been developed [26] which incorporates plane
features extracted from dense point clouds and represented in
quaternion form as in [29]. In contrast, in our prior work [30],
we have introduced the closest point (CP) representation of
planes for aided INS, which was successfully employed in
our recent 3D LiDAR-inertial plane SLAM system [27].

One particular challenge when incorporating different ge-
ometrical features into state estimation is to find appropriate
representations, especially for their error states. As seen
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from the above discussion, while different parameterizations
for point, line and planes have been used, there is still a
lack of an unified representation for all these geometrical
features, which is of particular interest when using all
different features in a single estimator. To this end, Nardi
et al. [31] have tried to find a unified representation for
different geometrical primitives with a uniform data structure
and the operation between different geometrical features can
be decided by a multiplication table. However, it is not
clear how to incorporate measurement uncertainty into this
representation, which is necessary for state estimation.

In this paper, to bridge this gap, by fully understanding the
most commonly used parameterizations for different geomet-
rical features, we propose two sets of unified representations
for point, line and plane: (i) the unit quaternion based param-
eterization, and (ii) the closest point based parameterization.
Note that each unified representation has a minimal feature
error state and the related measurement uncertainties can be
easily incorporated into an INS estimator. Moreover, based
on our recent work [1] where we performed the observability
analysis for linearized aided INS with homogeneous point,
line and plane features separately, we analyze the observabil-
ity for linearized aided INS with combinations of point, line
and plane features all in our proposed CP form and examine
their corresponding unobservable subspace. Specifically, the
main contributions of this paper include:
• We introduce two sets of unified representations of both

quaternion and CP forms for points, lines and planes. In
particular, the CP form of lines is proposed for the first
time, which is a minimal parameterization with a 4D
Euclidean vector to represent a line and its error state.

• We perform complete observability analysis for aided
INS with points, lines and planes in quaternion (or
CP) form and show that the aided INS has the same
unobservable properties given the analytically computed
measurement Jacobians with the proposed unified pa-
rameterization. We also prove that aided INS with
combination of all the geometrical features in CP form
generally has the same 4 unobservable directions.

• We conduct extensive Monte-Carlo simulations to val-
idate the proposed CP representation and observability
analysis for the aided INS with combinations of geo-
metrical features.

II. AIDED INERTIAL NAVIGATION SYSTEM

In this section, we briefly describe the system and mea-
surement models for the aided INS with different geometrical
features. The state vector of the aided INS contains the
current IMU state xI and the feature state Gxfeat:

x=
[
x>I GxT

feat

]T
=
[

I
Gq̄> b>g Gv>I b>a Gp>I Gx>feat

]>
(1)

where I
Gq̄ is a unit quaternion represents the rotation between

the current IMU frame {I} and the global frame {G}, and
I
GR(q̄) is the corresponding rotation matrix. bg and ba repre-
sent the gyroscope and accelerometer biases, respectively,
while GvI and GpI denote the current IMU velocity and

position in the global frame. Gxfeat generically denotes the
features of different geometric types such as points, lines and
planes. For simplicity, the aiding exteroceptive sensor frame
is assumed to coincide with the IMU frame in this paper.

A. System Kinematic Model

The motion model of the system can be described as [32]:

I
G ˙̄q(t) =

1
2

Ω

(
I
ω(t)

)
I
Gq̄(t), GṗI(t) = GvI(t), Gv̇I(t) = Ga(t)

ḃg(t) = nwg(t), ḃa(t) = nwa(t), Gẋfeat(t) = 0m×1 (2)

where ω and a are the angular velocity and linear accelera-
tion, respectively. nwg and nwa are the zero-mean Gaussian
noises driving the IMU gyroscope and accelerometer biases.

m is the dimension of Gxfeat, and Ω(ω),

[
−bωc ω

−ω> 0

]
, with

b·c denotes skew symmetric matrix. Hence, the linearized
continuous-time error-state equations can be written as:

˙̃x(t)'

[
Fc(t) 015×m
0m×15 0m

]
x̃(t)+

[
Gc(t)
0m×12

]
n(t)

= F(t)x̃(t)+G(t)n(t) (3)

where x̃ = x− x̂ denotes the errors between the true state
x and its estimate x̂. The error states for quaternion can
be described as: δ q̄ = q̄ ⊗ ˆ̄q−1 with ⊗ represents the

quaternion multiplication and δ q̄ =
[

1
2 δθ

> 1
]>

. Fc(t) and
Gc(t) are the continuous-time error-state noise Jacobian
matrices, respectively. n(t) =

[
n>g n>wg n>a n>wa

]>
is mod-

eled as a zero-mean Gaussian process with autocorrelation
E
[
n(t)n>(τ)

]
= Qcδ (t− τ). Note that ng(t) and na(t) are

the noise contaminating angular velocity and linear accelera-
tion measurements. The discrete-time state transition matrix
Φ(k+1,k) from time tk to tk+1 can be derived as:

Φ(k+1,k) =

[
ΦI 015×m

0m×15 Φfeat

]

=



ΦI11 ΦI12 03 03 03 03×m
03 I3 03 03 03 03×m

ΦI31 ΦI32 I3 ΦI34 03 03×m
03 03 03 I3 03 03×m

ΦI51 ΦI52 ΦI53 ΦI54 I3 03×m
0m×3 0m×3 0m×3 Im×3 0m×3 Im


(4)

where ΦI and Φfeat represents the state transition matrix
of the IMU state and the feature state respectively, and the
analytical solution can be found in [4].

B. Point Measurements

The point measurements from different sensors in the
aided INS can be generically modeled as range and/or
bearing measurements [1]:

zp =

[
z(r)

z(b)

]
=


√

Ixf
>Ixf +n(r)

hb

(
Ixf,n(b)

)
' [ Hr

I x̃f +n(r)

Hb
I x̃f +Hnn(b)

]
(5)
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where Ixf represents a 3D point in IMU frame, Hr and Hb are
the range and bearing measurement Jacobians with respect
to Ixf, Hn is the noise Jacobian, n(r) and n(b) are zero-
mean Gaussian noises for range and bearing measurements,
respectively. To keep presentation concise, we also define

Hpro j =
[
H>r H>b

]>
(see [1]).

C. Line Measurements

Without loss of generality, we consider the projective line
measurements [28], which can be defined as the distance of
two ending image points, xs and xe, to the projected line
segment in the image:

zl =

[
x>s l√
l2
1+l2

2

x>e l√
l2
1+l2

2

]>
(6)

where l =
[
l1 l2 l3

]>
is the projected 2D image line from

3D line Ixl in the IMU frame, xs = [u1,v1,1]> and xe =
[u2,v2,1]> represent the homogeneous image coordinates.

D. Plane Measurements

Given point cloud from sensors (e.g., RGBD camera
or LiDAR), we can directly extract planes. Therefore, we
assume a direct plane measurement model as:

zπ = Ixπ +n(π) (7)

where Ixπ is the plane in the IMU frame and n(π) is the
zero-mean white Gaussian noise.

E. Observability Analysis

Observability analysis for the linearized aided INS can be
performed in a similar way as in [4], [11]. In particular, the
observability matrix M(x) is given by:

M(x) =


Hx,1Φ(1,1)

...
Hx,kΦ(k,1)

 (8)

where Hx,k represents the measurement Jacobians at time-
step k. The right null space of M(x), denoted by N, indicates
the unobservable directions of the underlying system.

III. UNIFIED FEATURE REPRESENTATIONS
OF POINTS, LINES AND PLANES

As proper representations of point, line and plane features
are important for state estimation, based on the extensive
review of the most commonly used point, line and plane
representations as summarized in Table I and Fig. 1, we
introduce two sets of unified representations for points, lines
and planes, i.e., the quaternion and CP parameterizations.

Fig. 1. Geometrical parameters for (a) point xf, (b) line xl , and (c) plane xπ .

A. Point Representations

Model 1 in Table I is the homogeneous coordinates,
fi, i ∈ 1 . . .4, for a point feature xf, which is the most
general form. Model 2 represents the point with a unit
bearing vector bf and a range scalar rf measuring the distance
from point to the origin O (see Fig. 1 (a)). Since the
3D unit vector bf can be represented by 2 angles θf and

φf: bf =
[
cosθf cosφf sinθf cosφf sinφf

]>
, we can easily

derive Model 3, which is similar to spherical coordinate. If
we use the inverse of range scalar λf =

1
df

, we get Model
4, which essentially is the inverse depth representation [33].
Recently, Maley and Huang [34] introduced a unit quaternion
representation (Model 5) for points, which wraps bf and
rf into a unit quaternion. Model 5 leverages the quaternion
error state, which is minimal for point state estimation. For
example, a point in quaternion form can be written as:

q̄f =

[
qf
qf

]
=

1√
1+ r2

f

[
bf
rf

]
' δ q̄f⊗ ˆ̄qf =

[
1
2 δθ f

1

]
⊗ ˆ̄qf (9)

where δθ f is the error state for point in unit quaternion form.
Let pf be the closest point from the point to the origin,
which is the most conventional parameterization for point
feature (i.e., Model 6). It can be computed by multiplying
the bearing vector bf with the range scalar rf as:

pf = rfbf = p̂f + p̃f (10)

where p̃f is the error state in closest point form.

B. Line Representations

Given two points pf1 and pf2 in a line xl , we can obtain
its Plücker coordinate (Model 1 of lines in Table I) as [28],
[35]: [

nl
vl

]
=

[
bpf1cpf2
pf2−pf1

]
(11)

where nl represents the normal direction of the plane con-
structed by the two points and the origin, vl represents the
line direction. In Model 1, the distance from the origin to
the line can be computed as dl =

‖nl‖
‖vl‖

. Bartoli et al. [28]
introduced the minimal orthonormal error state (δθ l and δφl ,
see [1] for detailed explanations) of Model 1 when involving
lines in structure from motion. We can also represent the line
with Model 2, which contains all the geometrical elements
of a line, including a unit normal direction ne =

nl
‖nl‖

, a unit
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TABLE I
SUMMARY OF POINT, LINE AND PLANE REPRESENTATIONS

Model # Point Error states Line Error states Plane Error states

1: General Form f1, f2, f3, f4 not minimal nl , vl δθ l , δφl π1, π2, π3, π4 not minimal

2: Geometrical Form bf, rf not minimal ne =
nl
‖nl‖

, ve =
vl
‖vl‖

, dl =
‖nl‖
‖vl‖

not minimal nπ , dπ not minimal

3: Spherical Form θf, φf, rf θ̃f, φ̃f, r̃f θl , φl , αl , dl θ̃l , φ̃l , α̃l , d̃l θπ , φπ , dπ θ̃π , φ̃π , d̃π

4: Inverse Depth θf, φf, λf =
1
rf

θ̃f, φ̃f, λ̃f θl , φl , αl , λl =
1
dl

θ̃l , φ̃l , α̃l , λ̃l θπ , φπ , λπ = 1
dπ

θ̃π , φ̃π , λ̃π

5: Quaternion q̄f =
1√

1+r2
f

bf

rf

 δθ f
dl , q̄l with

R(q̄l) =
[
ne,ve,bnecve

] δθ l , d̃l q̄π = 1√
1+d2

π

nπ

dπ

 δθ π

6: Closest Point pf = rfbf pf = p̂f + p̃f pl = dl q̄l pl = p̂l + p̃l pπ = dπ nπ pπ = p̂π + p̃π

line direction ve =
vl
‖vl‖

and the distance scalar dl (see Fig. 1
(b)). Alternatively, a line can be parameterized by 3 angles
θl , φl , αl and a distance dl (Model 3, see our companion
technical report [36] for the transformation between Models
2 and 3). In analogy to the case of point features, we can
use the inverse depth (λl =

1
dl

) representation (Model 4) for
line features. Interestingly, Kottas et al. [20] used a unit
quaternion q̄l and a distance scalar dl to represent a line
(Model 5), where the quaternion describes the line direction:

R(q̄l) =
[
ne ve bnecve

]
(12)

q̄l ' δ q̄l⊗ ˆ̄ql =

[
1
2 δθ l

1

]
⊗ ˆ̄ql (13)

where δθ l represents the error state of the line quaternion.
The 4D minimal error states of the line include the quater-

nion error angle and the distance scalar error:
[
δθ
>
l d̃l

]>
.

More importantly, if we multiply the unit quaternion q̄l
with the distance scalar dl , we obtain a 4D vector, which
can be considered as the “closest point” for a line in the 4D
vector space (i.e., Model 6):

pl = dl q̄l = dl

[
q>l ql

]>
= p̂l + p̃l (14)

where p̃l is the 4D error state for the closest point of a line.
It should be noted that this minimal CP parameterization for
lines (14) appears to be proposed for the first time and is
shown to have good numerical stability (see Section VI).

C. Plane Representations

Similar to point features, the homogeneous coordinate
( fi, i ∈ 1 . . .4) is the most general form for planes (Model
1) [37]. The Hesse form (Model 2) uses the normal direction
nπ and the distance scalar dπ to represent a plane. As nπ can
be represented by two angles θπ and φπ (see Fig. 1 (c)):

nπ =
[
cosθπ cosφπ sinθπ cosφπ sinφπ

]>
, the spherical

coordinate (Model 3) can be used to represent the plane
with two angles (θπ and φπ ) and the distance scalar dπ . If
using the inverse depth λπ = 1

dπ
, we have the inverse depth

representation for planes (Model 4). Recently, Kaess [29]
proposed to use a unit quaternion to represent a plane by
including the unit normal direction and the distance scalar

into a quaternion (Model 5):

q̄π =

[
qπ

qπ

]
=

1√
1+d2

π

[
nπ

dπ

]
' δ q̄π ⊗ ˆ̄qπ =

[
1
2 δθ π

1

]
⊗ ˆ̄qπ (15)

where δθ π is the minimal error state for the quaternion plane
representation. In Model 6, the closest point from the plane
to the origin is used to represent the plane [27], [38] which
has the minimal Euclidean error state p̃π :

pπ = dπ nπ = p̂π + p̃π (16)

D. Remarks

It is clear that Models 1 and 2 parameterizations for point,
line and plane features, are not minimal, which may cause
numerical issues (e.g., singular information matricies) if di-
rectly using these parameters during least-squares optimiza-
tion. While Models 3 and 4 are minimal represenations, these
models might suffer from singularities when the elevation
angle φ =±π

2 , similar to gimbal lock for Euler angles.
Interestingly, all point [34], line [20] and plane [29]

features can be parameterized by the unified representation
of quaternion (Model 5), which exploits the minimal error
states of quaternion for state estimation for better numerical
stability. However, the observability properties of quaternion
representation for point and planes are missing in the liter-
ature, though those are studied in the case of line features
in [20]. Therefore, we perform an extensive observability
analysis with the unified quaternion representation for points,
lines and planes, where we have analytically derive the mea-
surement Jacobians (see our companion technical report [36]
for detailed derivations), showing that the same observability
properties of aided INS are preserved.

More importantly, the closest point (CP) form (i.e., Model
6) provides another unified parameterization for different
geometrical features. The CP model for point is simply its
3D position in Euclidean space. While the CP representation
for planes was introduced for INS in our prior work [27],
in this work, we propose a novel 4D CP model for line
features with the minimal 4D error states in 4D Euclidean
space. Note that when using the CP parameterization, the
error propagation for different geometrical features can be
easily defined in the Euclidean vector space, and thus the
cost functions of intuitive geometric interpretation can be
formulated. In the following we will first perform detailed
observability analysis using this novel CP line.
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IV. OBSERVABILITY ANALYSIS FOR CP LINES

From the preceding section, it is not hard to find the
connection between the error state p̃l of a CP line and that

of the corresponding quaternion line
[
δθ
>
l d̃l

]>
[see (14)]:

pl = p̂l + p̃l =
(

d̂l + d̃l

)
δ q̄l⊗ ˆ̄q =

(
d̂l + d̃l

)
R( ˆ̄q)

[
1
2 δθ l

1

]

⇒ R( ˆ̄q)T (p̂l + p̃l) =

[
1
2 (d̂l + d̃l)δθ l

d̂l + d̃l

]
'

[
1
2 d̂lδθ l
d̂l + d̃l

]

⇒ R( ˆ̄q)T (p̂l + p̃l)−

[
0
d̂l

]
'

[
1
2 d̂lI3 0

0 1

][
δθ l
d̃l

]

⇒

[
δθ l
d̃l

]
'

[
2
d̂l

I3 0
0 1

]R( ˆ̄q)T (p̂l + p̃l)−

[
0
d̂l

]
⇒

[
δθ l
d̃l

]
'

[
2
d̂l

(
q̂lI3−bq̂lc

)
− 2

d̂l
q̂l

q̂>l q̂l

]
p̃l (17)

where R(·) is the right quaternion multiplication matrix [32].
With the above relationship (17), we are now ready to

perform observability properties of the aided INS with the
CP-parameterized lines. In analogy to [1], [4], we consider
the state vector with one CP line, which is given by:

x =
[
x>I p>l

]>
(18)

The measurement Jacobians of the line measurement model
(6) can be computed using the chain rule of differentiation:

H(l)
x =

∂ z̃l

∂ x̃
=

[
∂ z̃l
∂ x̃I

... ∂ z̃l
∂ Gq̃l

]
(19)

=

 ∂ z̃l
∂ l̃

∂ l̃
∂ I L̃

∂ I L̃
∂ x̃I

... ∂ z̃l
∂ l̃

∂ l̃
∂ I L̃

∂ I L̃
∂ GL̃

∂ GL̃

∂

δθ l
d̃l


∂

δθ l
d̃l


∂ Gq̃l

 (20)

where we have used the following identities (see [36]):

l =
[
K 03

]
IL (21)

IL =

[
Ine

Idl
Ive

]
=

[
I
GR −I

GRbGpIc
03

I
GR

][
Gne

Gdl
Gve

]
(22)

∂ z̃l

∂ l̃
=

1
ln

u1− l1e1
l2
n

v1− l2e1
l2
n

1

u2− l1e2
l2
n

v2− l2e2
l2
n

1

 (23)

where e1 = l>xs, e2 = l>xe and K is the projection matrix
for lines. The detailed derivations can be found in [36]. In
particular, if using lines, Φfeat = I4, then we can have the
k-th block of observability matrix as:

M(l)
k = H(l)

xk Φ(k,1) =
∂ z̃l

∂ l̃

[
KI

GR 03

]
×[

Γl11 Γl12 Γl13 Γl14 Γl15 Γl16 Γl17
Γl21 Γl22 Γl23 Γl24 Γl25 Γl26 Γl27

]
(24)

where Γli j, i ∈ 1 . . .2, j = 1 . . .7 can again be found in our
companion technical report [36]. Based on this structure of
the observability matrix, we conclude as follows:

Lemma 1. For aided INS, if there is only one line feature
in the state vector, and the line feature is parameterized in
the proposed 4D CP form, the system will have at least 5
unobservable directions denoted by N(l):

N(l) =



I1
GR̂Gg 03 03×1
03×1 03

Gv̂e
−bGv̂I1cGg 03 03×1

03×1 03 03×1
−bGp̂I1cGg G

L R̂ 03×1

−
Gd̂π

2

(
Gq̂lI3−bq̂lc

)
Gg Nla 03×1

Gd̂l
2

Gq̂>l
Gg Nlb 0


(25)

where we have employed:

G
L R =

[
Gn̂e

Gv̂e bGn̂ecGv̂e

]
(26)

Nla =

[
1
2

(
Gq̂lI3−bGq̂lc

)
Gv̂e 03×1 −Gq̂l

]
(27)

Nlb =
[
− 1

2
Gq̂>l

Gv̂e 0 −Gq̂l

]
(28)

Proof. See [?].

Let N(l)
i , i ∈ 1 . . .5 denote the i-th column of the matrix

N(l). N(l)
1 relates to the global yaw around the gravity

direction, N(l)
2:4 associate with the global position of the sensor

platform, and N(l)
5 corresponds to the velocity along the

line direction. Clearly, the proposed CP line representation
preserves the system observability properties [1].

V. OBSERVABILITY ANALYSIS FOR AIDED INS WITH
HETEROGENEOUS FEATURES

In this section, we study the observability properties for
the general aided INS with the combination of different
geometrical features including points, lines and planes that
are all in the unified representation of CP form. To keep
concise presentation, we here consider one feature of each

type in the state vector, i.e., xfeat =
[

Gp>f
Gp>l

Gp>π
]>

.
The state vector of the system then becomes:

x =
[
x>I Gp>f

Gp>l
Gp>π

]>
(29)

The measurement model stacks (5), (6) and (7):

zplπ =
[
z>p z>l z>π

]>
(30)

The state transition matrix for the feature state becomes
Φfeat = I10. Proceeding similarly, we can construct the ob-
servability matrix and then compute its null space in order
to find the unobservable directions:

Lemma 2. For the aided INS with one point, one line
and one plane feature in the state vector and they are all
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Fig. 2. Monte Carlo results of the standard and ideal EKFs for vision-aided inertial SLAM (VI-SLAM): (left) simulation setup, (middle) NEES of sensor
pose (position and orientation), and (right) RMSE of sensor pose (position and orientation).

parameterized in CP form, the system will have at least 4
unobservable directions as N(plπ).

N(plπ) =



I1
GR̂Gg 03
03×1 03

−bGv̂I1×cGg 03
03×1 03

−bGp̂Ik×cGg G
L R̂

−bGp̂f×cGg G
L R̂

−
Gd̂l
2

(
Gq̂lI3−bq̂lc

)
Gg Nla

Gd̂l
2

Gq̂>l
Gg Nlb

−bGp̂πcGg Gn̂π e>3
G
Π

R̂>G
L R̂


(31)

where we have defined G
π R =

[
Gn⊥

π1
Gn⊥

π2
Gnπ

]
, and

Gn⊥
πi, i = 1,2 are orthonormal to Gnπ (see Fig. 1).

Proof. See [36].

VI. SIMULATION RESULTS

We have performed extensively Monte Carlo simulations
of EKF-based visual-inertial SLAM to validate the proposed
CP parameterization for line as well as the observability
analysis for aided INS with the combination of geometrical
features all in unified CP form. An IMU with a stereo camera
moving along a 3D sinusoid trajectory is simulated. The
stereo camera produces the projective feature measurements
from a pre-generated map. To validate the observability
analysis, we have two different EKFs as in [4], [11], [39]:
(i) the ideal EKF-based VINS which uses true states as
linearization points, and (ii) the standard EKF-based VINS
which uses estimated states for linearization. The ideal EKF
should demonstrate consistent estimation, while the standard
EKF tends to be overconfident and thus, inconsistent. The
normalized estimation error squared (NEES) and root mean
squared error (RMSE) are used to evaluate the consistency
and accuracy [40] of the estimator. It is clear from Fig. 2

that the standard VINS with line features in proposed 4D CP
form can generate accurate estimation results. In addition, as
expected, the ideal EKF, which is consistent, performs better
than the standard EKF, for the VINS with the combination
of geometric features in CP form. Note that by marginalizing
features through null space operation [41], we have also
extended the standard MSCKF VIO with point features [2]
to the case of heterogeneous features and validated its
performance in simulations as shown in [36].

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we have introduced two sets of unified
representations for different geometrical features (points,
lines and planes): the quaternion form and the CP form. We
particularly advocate a novel CP model to parameterize line
features, of which the error states are directly in the minimal
4D Euclidean vector space. Moreover, based on our recent
work [1], we have provided an extensive observability anal-
ysis together with all the analytically computed Jacobians
for aided INS with geometrical features in unified represen-
tations, showing that both representations preserve the same
observability properties. In particular, the proposed unified
CP representation and the observability analysis are validated
through extensive Monte-Carlo simulations of vision-aided
INS. In the future, we will investigate the (stochastic) ob-
servability of aided INS under adversarial attacks [42] or
unknown inputs [43] in order to design secure estimators
for robot navigation. In addition, based on the quaternion
parameterization, we can extend this representation in SO(3)
form, and build visual-inertial SLAM system to compare
these representations for different geometrical features.
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