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Abstract— In this paper, we perform observability analysis
for inertial navigation systems (INS) aided by generic exte-
roceptive range and/or bearing sensors with different geo-
metric features including points, lines and planes. While the
observability of vision-aided INS (VINS, which uses camera
as a bearing sensor) with point features has been extensively
studied in the literature, we analytically show that the same
observability property remains if using generic range and/or
bearing measurements, and if global measurements are also
available, as expected, some unobservable directions dismiss.
We study in-depth the effects of four degenerate motions
on the system observability. In particular, building upon the
observability analysis of the aided INS with point features, we
perform observability analysis for the same system but with
line and plane features, respectively, and show that there exist
5 (and 6) unobservable directions for a single line (and plane)
feature. Moreover, we, for the first time, analytically derive the
unobservable directions for the cases of multiple lines/planes.
We validate our analysis through Monte Carlo simulations.

I. INTRODUCTION AND RELATED WORK

Over the past decades, an inertial navigation system (INS)

using an inertial measurement unit (IMU) is among the most

popular approaches to estimate the 6 degrees-of-freedom

(DOF) position and orientation (pose) in 3D, especially in

GPS-denied environments such as underwater, indoor, in the

urban canyon, and in space. However, simple integration of

IMU measurements that are corrupted by noise and bias,

often results in unreliable estimates in a long term, although

a high-accuracy IMU exists but remains prohibitively ex-

pensive for widespread deployment. A camera that is small,

light-weight, and energy-efficient, provides rich information

about the perceived environment and serves as an idea

aiding source for INS, i.e., vision-aided INS (VINS) [1]–

[8]. Nevertheless, many other exteroceptive sensors such as

LiDAR [9], RGBD camera [10] and 2D imaging sonar [11],

can also be used to aid INS by providing range and/or bearing

measurements to features. To date, various algorithms are

available for aided INS problems, among which the EKF-

based approaches remain arguably the most popular, for

example, observability constrained (OC)-EKF [1], [12], and

multi-state constrained Kalman filter (MSCKF) [3], [13].

As system observability plays an important role in devel-

oping consistent state estimation [14], the observability of

VINS has been extensively studied. In particular, the authors
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of [15], [16] examined the system’s indistinguishable trajec-

tories. By employing the concept of continuous symmetries,

[17], [18] showed explicitly that the IMU biases, 3D velocity,

and absolute roll and pitch angles in VINS are observable.

In [1], [19], observability analysis for the linearized VINS

was performed by analytically finding the right null space

of the observability matrix. The corresponding nonlinear ob-

servability analysis [20] was also carried out, respectively, for

monocular vision-aided INS [2] and RGBD-aided INS [21],

where the unobservable directions were found analytically.

Previous work shows that there are 4 unobservable directions

(3 correspond to global translation and 1 to global yaw)

for VINS. However, few have studied the observability for

INS aided with generic range and/or bearing measurements

using different geometric features. Note that aided INS

might be fed into global measurements, such as altitude

measurements by barometers and orientation measurements

by compasses. It is important to understand the effects of

such measurements on the system observability. Moreover, it

is of practical significance to examine the degenerate motions

that may ruin the system observability properties by causing

more unobservable directions (e.g., see [22]).

While most current VINS algorithms focus on using point

features [1]–[3], line and plane features are to prevail [10],

[23]–[25], because of their advantages: (i) There are plenty

of straight lines and planes in common urban or indoor

environments (e.g., doors, walls, stairs); (ii) They can be

easily detected and tracked continuously over a relatively

long time period; (iii) They are more robust in texture-less

environments compared to points. In particular, Kottas et

al. [25] represented the line with a quaternion and a scalar,

and studied the line observability based on this representation

with linearized observability matrix. Guo et al. [10] and

Panahandeh et al. [24] analyzed the observability of VINS

with plane features, while assuming plane orientation is

a priori known. In contrast, in this work, we make no

assumption for lines or planes and advocate to use the

orthonormal representation [26] to model the error states for

line features. Specifically, the main theoretical contributions

of this paper are the following:

• We generalize the VINS observability analysis to INS

aided with any type of exteroceptive sensors such as

3D LiDAR, 2D imaging sonar, and stereo cameras, and

analytically show that the same observability properties

remain (i.e., four unobservable directions).

• We study in-depth the effects of global measurements on

the system observability, showing that they, as expected,
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will improve the system observability.

• By employing the spherical coordinates for the point

feature, we identify 4 degenerate motions that cause the

aided INS to have more unobservable directions.

• We perform observability analysis for the aided INS

with line and plane features, respectively, and show

that there exist 5 (and 6) unobservable directions for

a single line (and plane) feature. Moreover, we analyt-

ically derive the unobservable directions for multiple

lines (planes), without any assumption about features.

II. AIDED INS WITH POINT FEATURES

In this section, we briefly describe the system and mea-
surement models of the general aided INS, which will form
the basis for the ensuing analysis. In particular, the state
vector of the aided INS contains the current IMU state xIMU
and the feature GPf (note that for simplicity of presentation,
we consider the case of a single feature):

x=
[
x�IMU

GP�
f

]
=
[

I
Gq̄� b�

g
GV�

I b�
a

GP�
I

GP�
f

]�
(1)

where I
Gq̄ is a unit quaternion represents the rotation of

IMU from the global frame to the IMU frame. GVI and
GPI represents the velocity and position of the IMU in the

global frame, while bg and ba represent the gyroscope and

accelerometer biases, respectively.

A. IMU Propagation Model
The time evolution of the system is given by [27]:

I
G ˙̄q(t) =

1

2
Ω
(

Iω(t)
)

I
Gq̄(t), GṖI(t) = GVI(t), GV̇I(t) = Ga(t)

ḃg(t) = nwg(t), ḃa(t) = nwa(t), GṖf(t) = 03×1 (2)

where Iω and Ia are the angular velocity and linear acceler-

ation, respectively. nwg and nwa are the zero-mean Gaussian

noise processes driving the gyroscope and accelerometer

biases, and Ω(ω)�
[−�ω×� ω

−ω� 0

]
, �ω×� denotes skew sym-

metric matrix of ω . The gyroscope and the accelerometer

measurements are:

ωm(t)= Iω(t)+bg(t)+ng(t) (3)

am(t)= R
(

I
Gq̄(t)

)(
Ga(t)−Gg

)
+ba(t)+na(t) (4)

where R(q̄) represents the rotation corresponding to the

quaternion q̄, Gg =
[
0 0 −g

]�
is the gravity, ng(t) and

na(t) are zeros-mean Gaussian white noises corrupting an-

gular velocity and linear acceleration measurement.

Linearizing the system model (2) at the current state esti-

mates yields the continuous-time error-state equation [27]:

˙̃x(t) =
[

Fc(t) 015×3

03×15 03

]
x̃(t)+

[
G(t)
03×12

]
n(t) = F(t)x̃(t)+G(t)n(t) (5)

where Fc(t) and Gc(t) are the continuous-time error-

state transition matrix and noise Jacobian matrix. The

system noise n(t) =
[
n�

g n�
wg n�

a n�
wa

]�
are modeled as

a zero-mean white Gaussian process with autocorrelation

E

[
n(t)n�(τ)

]
= Qcδ (t − τ). To propagate covariance, we need

to compute the discrete-time state transition matrix Φ(k+1,k)
from time tk to tk+1, which is obtained by solving the

differential equation Φ̇(k+1,k) = F(tk)Φ(k+1,k) with Φ(1,1) =

I18 [1]. With that, the discrete-time noise covariance matrix

and the propagated covariance can be computed as:

Qk =
∫ tk+1

tk
Φ(k,τ)Gc(τ)QcG�

c (τ)Φ
�
(k,τ)dτ (6)

Pk+1|k = Φ(k+1,k)Pk|kΦ�
(k+1,k) +Qk (7)

B. Generic Measurement Model

A 3D point feature detected from range and/or bearing

measurements, can be represented by:

Pf =
[
xf yf zf

]�
= rfbf (8)

where rf and bf are the range and bearing of the point. For

simplicity, we assume the sensor frame coincides with the

IMU frame. The point in the local sensor frame is given by:

IPf =
[

Ixf
Iyf

Izf

]�
= I

GR
(

GPf −GPI

)
(9)

While a variety of sensors are available and provide

different measurements, all these measurements in the aided

INS are in the form of range and/or bearing, which can be

modeled generically as follows [28]:

z =

[
z(r)

z(b)

]⎡⎢⎣
√

IPf
�IPf +n(r)

hb

(
IPf,n(b)

)
⎤
⎥⎦ (10)

Linearization at the current feature estimate IP̂f yields:

z̃ =

[
z̃(r)

z̃(b)

]
�
[

Hr
IP̃f +n(r)

Hb
IP̃f +Hnn(b)

]
(11)

where Hr and Hb denote the range and bearing measurement

Jacobians, and Hn is the noise Jacobian (see [28]).

III. OBSERVABILITY ANALYSIS OF AIDED INS WITH

POINT FEATURES

In this section, we perform observability analysis for the

linearized system of aided INS with point features based on

generic measurements in a similar way as in [1], [12]. In

particular, the observability matrix M(x) is given by:

M(x) =

⎡
⎢⎢⎢⎢⎣

HI1Φ(1,1)

HI2Φ(2,1)
...

HIk Φ(k,1)

⎤
⎥⎥⎥⎥⎦ (12)

The unobservable directions of this aided INS span the right

null space of M(x). Specifically, for each block row of M(x),
we have:

HIk =
[

Hr,k
Hb,k

][
�Ik

GR̂
(

GP̂f −GP̂Ik

)
×� 03 03 03 −Ik

GR̂ Ik
GR̂

]
(13)

= Hpro j,k
Ik
GR̂

[
�
(

GP̂f −GP̂Ik

)
×�Ik

GR̂� 03 03 03 −I3 I3

]

where we have defined Hpro j,k =
[
H�

r,k H�
b,k

]�
. Thus,

HIk Φ(k,1) = Hpro j,k
Ik
GR̂

[
Γ1 Γ2 Γ3 Γ4 −I3 I3

]
(14)

where:

Γ1 = �GP̂f −GP̂I1 −GV̂I1δ tk − 1

2
Gg(δ tk)2×�G

I1 R̂

Γ2 = �
(

GP̂f −GP̂Ik

)
×�Ik

GR̂�Φ12 −Φ52, Γ3 =−I3δ tk, Γ4 =−Φ54
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Note that for the analysis purpose, we assume that in

computing different Jacobians the linearization points for the

same state variables remain the same. By inspection, it is not

difficult to see that the null space for the matrix M(x) is given

by:

N =
[
Np Nr

]
= (15)⎡

⎣ 03 03 03 03 I3 I3(
I1
GR̂Gg

)�
01×3 −

(
�GV̂I1×�Gg

)�
01×3 −

(
�GP̂I1×�Gg

)� −
(
�GP̂f×�Gg

)�

⎤
⎦
�

where Np corresponds to the sensor’s global translation and

Nr relates to the global rotation around the gravity direction.

For generic range and bearing sensors, the measurement

Jacobian w.r.t. Ik Pf can all be represented by Hpro j,k. From

the above analysis, we see that the system has at least four

unobservable directions.

Additionally, in analogy to [2], [12], [21], we have further

performed the nonlinear observability analysis based on lie

derivatives [20] for the continuous-time nonlinear INS aided

by generic measurements, which is summarized as follows:

Lemma 1. The continuous-time nonlinear INS aided by
generic range and/or bearing measurements with point fea-
tures, has 4 unobservable directions.

Proof. See [28].

A. Global Measurements

In practice, the aided INS may also have access to (partial)

global measurements provided by, for example, GPS, motion

capture systems, barometers and compasses. Intuitively, such

measurements would alter the system observability prop-

erties, even if only partial (not full 6DOF) information is

available. In what follows, we systematically inspect the

impacts of such measurements on observability.

1) Global Position Measurements: We consider the case

where besides the range and bearing sensors, global position

measurements are also available from, for example, GPS

and barometer. Specifically, if sensor’s translation along x
direction is known, the additional measurement is given by

z(x) = e�1
GPI . The measurement Jacobians and the block row

of observability matrix at time step k can be computed as:

HIk =

⎡
⎣Hr,k

Hb,k
Hx,k

⎤
⎦=

⎡
⎢⎢⎣Hpro j,k

Ik
GR̂

[
�
(

GP̂f −GP̂Ik

)
×�Ik

GR̂� 03 03 03 −I3 I3

]
[
01×3 01×3 01×3 01×3 e�1 01×3

]
⎤
⎥⎥⎦

⇒ HIk Φ(k,1) =

⎡
⎣Hpro j,k

Ik
GR̂

[
Γ1 Γ2 Γ3 Γ4 −I3 I3

][
01×3 01×3 01×3 01×3 e�1 01×3

]
⎤
⎦ (16)

where Hx,k is the measurement Jabocians for global x
measurement. We can show that the system’s unobservable

directions now become:

Nx =
[
02×3 02×3 02×3 02×3

[
02×1 I2

] [
02×1 I2

]]�
(17)

Compared to N in (15), both sensor’s global translation in

x direction and the rotation around the gravity direction be-

come observable. Analogously, if global y-axis measurement

is available, translation along y and rotation around gravity

direction will become observable [28].

Proceeding similarly, if the sensor’s translation in z direc-
tion is directly measured, e.g., by a barometer, we have an
additional measurement z(z) = e�3

GPI . In this case, the block
row of the observability matrix at time step k becomes:

HIk Φ(k,1) =

⎡
⎣Hpro j,k

Ik
GR̂

[
Γ1 Γ2 Γ3 Γ4 −I3 I3

][
01×3 01×3 01×3 01×3 e�3 01×3

]
⎤
⎦ (18)

Since e3 is parallel to Gg, then e�3 �GPI1×�Gg = 0. Therefore,
the system’s unobservable directions become Nz:

N�
z =

⎡
⎣ 02×3 02×3 02×3 02×3

[
I2 01×2

] [
I2 01×2

](
I1

GR̂Gg
)�

01×3

(
−�GV̂I1

×�Gg
)�

01×3

(
−�GP̂I1

×�Gg
)� (

−�GP̂f×�Gg
)�

⎤
⎦

Clearly, only translation in z becomes observable, while,

different from the cases with global x and y measurements,

the rotation around gravity direction is still unobservable.
2) Global Orientation Measurements: If the aided INS is

equipped with a magnetic compass, then we also have global
orientation measurements given by z(N) = INn =

I
GRGNn. In

this case, the Jacobians and the block row of the observability
matrix at time step k can be computed as:

HIk =

⎡
⎣Hr,k

Hb,k
HN,k

⎤
⎦=

⎡
⎢⎢⎣Hpro j,k

Ik
GR̂

[
�
(

GP̂f −GP̂Ik

)
×�Ik

GR̂� 03 03 03 −I3 I3

]
Ik
GR̂

[
�GNn×�Ik

GR̂� 03 03 03 03 03

]
⎤
⎥⎥⎦

⇒ HIk Φ(k,1) =

⎡
⎣Hpro j,k

Ik
GR̂

[
Γ1 Γ2 Γ3 Γ4 −I3 I3

]
Ik
GR̂

[
�GNn×�G

I1
R̂ Γ5 03 03 03 03

]
⎤
⎦ (19)

where HN,k is the Jacobians for orientation measurement, and
Γ5 = �GNn×�Ik

GR̂�Φ12. If GNn is not parallel to Gg, �GN×�Gg �= 0.
the rotation around the gravity direction becomes observable,
and the unobservable directions become:

Nn =
[
03 03 03 03 I3 I3

]�
(20)

In summary, as expected, global measurements will make

the system more observable. If a global full position measure-

ments by GPS or a prior map are available, the system will

become fully observable, while global orientation measure-

ments can make the rotation around gravitational direction

observable, as long as this orientation is not parallel to the

direction of gravity.

B. Degenerate Motion

We further investigate degenerate motion for INS aided

with generic range and bearing sensors, which is important

for healthy estimators. As compared to [22] where pure

translation or constant acceleration have been reported to be

degenerate in VINS, we identify 2 more degenerate cases:

pure rotation and translation towards a feature. To ease the

analysis, we use range and bearing parameterization (i.e.,

spherical coordinates) of the point feature, instead of the

conventional 3D Euclidean coordinates.

Pf =

⎡
⎣xf

yf
zf

⎤
⎦= rfbf = rf

⎡
⎣cosθ cosφ

sinθ cosφ
sinφ

⎤
⎦ (21)

where rf is the range, θ and φ represents the horizontal and
elevation angle of point feature. With that, the state becomes:

x =

[
I
Gq̄� b�

g
GV�

I b�
a

GP�
I

[
Grf

Gθ Gφ
]]�

(22)
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In this case, we can write the block row of the obsevability
matrix as:

HIk = Hpro j,k
Ik
GR̂

[
�
(

GP̂f −GP̂Ik

)
×�Ik

GR̂� 03 03 03 −I3

[
∂ GP̃f
∂ Gr̃f

∂ GP̃f
∂ Gθ̃f

∂ GP̃f
∂ Gφ̃f

]]

⇒ HIk Φ(k,1) = Hb,k
Ik
GR̂

[
Γ1 Γ2 Γ3 Γ4 −I3 b̂f

Gr̂f cos φ̂ b̂⊥
1

Gr̂fb̂⊥
2

]
(23)

where

∂ GP̃f
∂ Gr̃f

=
[
cos θ̂ cos φ̂ sin θ̂ cos φ̂ sin φ̂

]�
� b̂f

∂ GP̃f
∂ Gθ̃f

=
[
−sin θ̂ cos θ̂ 0

]� Gr̂f cos φ̂ � Gr̂f cos φ̂ b̂⊥
1

∂ GP̃f
∂ Gφ̃f

=
[
−cos θ̂ sin φ̂ −sin θ̂ sin φ̂ cos φ̂

]� Gr̂f � Gr̂fb̂⊥
2

By inspection, the unobservable directions are given by:

Nrb=
[
Nrb,p Nrb,r

]
= (24)⎡

⎢⎣ 03 03 03 03 I3 b̂f
1

Gr̂f cos φ̂ b̂⊥
1

1
Gr̂f

b̂⊥
2(

I1

GR̂Gg
)�

01×3 −
(
�GV̂I1

×�Gg
)�

01×3 −
(
�GP̂I1

×�Gg
)�

0 −g 0

⎤
⎥⎦
�

where g =
∥∥∥Gg

∥∥∥, Nrb,p and Nrb,r denote the unobservable

directions related to the global translation and global rotation

around the gravity direction, which as expected agrees with

the preceding analysis.
1) Pure Translation: If the sensor undergoes pure trans-

lation, the system gain additional unobservable directions:

NR =

[
I1

GR̂
�

03 −
(
�GV̂I1

×�
)� (

I1

GR̂�Gg×�
)� −

(
�GP̂I1

×�
)� −Θ�

]�
(25)

where Θ =

⎡
⎣ 0 0 0

Gr̂f cos θ̂ tan φ̂ sin θ̂ tan φ̂ −1

−Gr̂f sin θ̂ cos θ̂ 0

⎤
⎦. Similar to [22], this

unobservable direction can be easily verified as follows:

HIk Φ(k,1)NR = Hpro j,k
Ik
GR̂

(
Γ4

I1
GR̂− 1

2
δ t2

k I3

)
�Gg×�= 0 (26)

From Θ we see that this unobservable direction only relates

to the bearing of the feature, since the first row of Θ
are all zeros. This indicates that the global rotation of the

sensor all becomes unobservable, rather than only global yaw

unobservable for general motion. It is important to note that

no assumption is made about sensors used in this analysis.

2) Pure Rotation: If sensor has only rotational motion,

then GPIk = 03×1 and we have Ik Pf =
Ik
GRGPf. For mono-

camera, the system will gain one more unobservable direc-

tion corresponding to the feature’s range:

N1 =
[
01×3 01×3 01×3 01×3 01×3 1 0 0

]�
(27)

Since a mono-camera provides only bearing measurements,

Hpro j,k = Hb,k (see [28]). In this case, we have:

HIk Φ(k,1)N1 = Hb,k
I b̂f= Hb,k

I
GR̂Gb̂f = 0

Therefore, we have one more unobservable direction related

to the scale of the feature.

3) Moving Toward a Feature: If the mono-camera is

moving towards a feature, then the system will also gain one

more unobservable direction related to this feature scale:

N1 =
[
01×3 01×3 01×3 01×3 01×3 1 0 0

]�
(28)

This degenerate motion indicates that the sensor is moving

along the direction of the feature’s bearing direction, that

is: GPIk = αGbf, with α denotes the scale of the sensor’s

motion. Then, we can arrive at:

Ik Pf =
Ik rf

Ik bf =
Ik
GR

(
GPf −GPIk

)
=

Ik
GR

(
Grf −α

)
Gbf (29)

Similar to the case of pure rotation, we can show the

additional unobservable direction N1 based on the following:

Hb,kΦ(k,1)N1 =
I r̂f

Gr̂f −α
Hb,k

I
GR̂Gb̂f = 02×1

4) Constant Acceleration: If the mono-camera moves
with constant local acceleration, i.e., Ia is constant, then the
system will have one more unobservable direction given by:

Na =
[
01×3 01×3

GV̂�
I1

−I â� GP̂�
I1

Gr̂f 0 0
]�

(30)

To see this, we have:

HIk Φ(k,1)Na = Hb,k
Ik
GR̂

(
−GV̂I1 δ tk −Γ4

I â−GP̂I1 +
Grf

Gb̂f

)
(31)

Based on [22], we know:

Γ4
Ia = GP̂Ik −GP̂I1 −GV̂I1 δ tk (32)

Therefore, we arrive at:

HIk Φ(k,1)Na = Hb,k
Ik
GR̂

(
GP̂f −GP̂Ik

)
= Hb,k

Ik P̂f = 02×1 (33)

Clearly, this null space is only related to the scale; thus, if

we use sensors such as stereo and RGBD cameras that can

recover the scale, this unobservable direction will disappear.

IV. OBSERVABILITY ANALYSIS OF AIDED INS WITH

LINE FEATURES

As navigating in structured environments, line features

can be used in the aided INS to provide more compact

information. Thus, in this section, we perform observability

analysis for the aided INS with line features to provide

insights for building consistent estimators.

A. Line Representation
Inspired by [26], we propose to use the Plücker representa-

tion for the line feature in the state vector while orthonormal
representation (which is minimal) for the error state. The
Plücker representation can be initialized by the two end
points PL1

and PL2
of a line segment L, as:

L =

[�PL1
×�PL2

PL2
−PL1

]
=

[
nL
vL

]
(34)

where nL and vL are the normal vector and direction vector
for the line L. We need a minimal parameterization for line
error states. Based on (34), we have:

L =
[
nL|vL

]
=
[

nL
‖nL‖

vL
‖vL‖

nL×vL
‖nL×vL‖

]⎡⎣‖nL‖ 0
0 ‖vL‖
0 0

⎤
⎦ (35)

where we can define:

RL(θL)= exp(−�θ L×�) =
[

nL
‖nL‖

vL
‖vL‖

nL×vL
‖nL×vL‖

]
WL(φL)=

1√
w2

1 +w2
2

[
w1 −w2

w2 w1

]
= η

[‖nL‖ −‖vL‖
‖vL‖ ‖nL‖

]

where w1 = ‖nL‖, w2 = ‖vL‖ and η = 1√
w2

1+w2
2

. Since

RL ∈ SO(3) and WL ∈ SO(2), we can define the error states
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for these parameters as δθ L and δφL (from RL and WL),

respectively. With that, the state can be written as:

x=
[

I
Gq̄� b�

g
GV�

I b�
a

GP�
I

GL�
f

]�
where GLf =

[
Gn�

L
Gv�L

]�
and GL̃f =

[
δθ�

L δφ�
L

]�
.

B. Observability Analysis: Single Line
Without loss of generality, consider stereo images are

available for detecting and tracking line features. Measure-

ments for the line are given by the distance of the two end

points xs and xe to the line [29]:

z =
[

x�s l′√
l2
1+l2

2

x�e l′√
l2
1+l2

2

]�
(36)

where we have used:

l′=
⎡
⎣ f1 0 0

0 f2 0
− f2c1 f1c2 f1 f2

⎤
⎦ InL =

⎡
⎣l1

l2
l3

⎤
⎦,I L=

[
I
GR −I

GR�GPI×�
03

I
GR

]
GL

Note that f1, f2, c1 and c2 are camera intrinsic parameters.
With the line measurements, we compute line measurement
Jacobians and the block row of the observability matrix at
time step k as follows:
∂ z̃
∂ x̃

=
∂ z̃
∂ l̃′

KI
GR̂

[(
�Gn̂L×�−��GP̂I×�Gv̂L×�

)
I
GR̂� 03×9 �Gv̂L×� Γl4 Γl5

]

HIk Φ(k,1) =
∂ z̃
∂ l̃′

KIk
GR̂

[
Γl1 Γl2 �Gv̂L×�δ tk Γl3 �Gv̂L×� Γl4 Γl5

]
where Γli, i∈ {i . . .5} are derived in our technical report [28].

We also define e1 = x�s l′, e2 = x�e l′, ln =
√

(l2
1 + l2

2), xs =

[u1,v1,1]
� and xe = [u2,v2,1]

�. With these, we have:

∂ z̃
∂ l̃′

=
1

ln

⎡
⎣u1 − l1e1

l2
n

v1 − l2e1

l2
n

1

u2 − l1e2

l2
n

v2 − l2e2

l2
n

1

⎤
⎦ (37)

It can be shown that the linearized aided INS system with a
line feature will have at least 5 unobservable directions [28]:

Nl=
[
Nl1 Nl2 Nl3 Nl4 Nl5

]
(38)

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I1

GR̂Gg 03×1 03×1 03×1 03×1

03×1 03×1 03×1 03×1 03×1

−�GV̂I1
×�Gg 03×1 03×1 03×1

Gv̂e
03×1 03×1 03×1 03×1 03×1

−�GP̂I1
×�Gg Gn̂e

Gv̂e �Gn̂e×�Gv̂e 03×1

−Gg w2

w1

Gv̂e 03×1 03×1 03×1

0 0 0 η2w2
2 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

where Gn̂e and Gv̂e is the unit direction for Gn̂L and Gv̂L,

respectively. Note that Nl1 relates to the rotation around the

gravitational direction, Nl2:4 relates to the sensor’s global

translation, while Nl5 relates to the sensor motion along the

line direction.

C. Observability Analysis: Multiple Lines
Assuming there are m > 1 un-parallel lines in the state

vector, we define the orientation G
Li

R of a line i and the

rotation Li
L jR between line i and line j (i, j ∈ {1, . . .m}) as:

G
LiR̂ =

[
Gn̂ei

Gv̂ei �Gn̂ei×�Gv̂ei

]
(39)

Li
L jR̂ = G

LiR̂
�G

L jR̂ (40)

Lemma 2. For the aided INS with m > 1 un-parallel line
features in the state vector, the system will have at least 4
unobservable directions.

Proof. See [28].

V. OBSERVABILITY ANALYSIS OF AIDED INS WITH

PLANE FEATURES

In analogy to the case of line features, in this section we

extend the observability analysis to the aided INS with plane

features. In particular, for any point Pf in a plane Π, we have

n�
ΠPf+d = 0, where nΠ is the normal direction of this plane

and |d| is the distance from the origin to plane Π. Hence,

plane Π can be represented as:

Π =
[
n�

Π d
]�

(41)

We still need a minimal error state representation for plane

update. Notice that a horizontal angle θ and elevation angle

φ can be used to describe the normal direction nΠ as:

nΠ =

⎡
⎣n1

n2

n3

⎤
⎦=

⎡
⎣cosθ cosφ

sinθ cosφ
sinφ

⎤
⎦ (42)

Thus, the error state for the plane can be denoted as

Π̃ =
[
θ̃ φ̃ d̃

]�
. Accordingly, the state vector of the system

with one plane feature becomes:

x=
[

I
Gq̄� b�

g
GV�

I b�
a

GP�
I

GΠ�]� (43)

A. Observability Analysis: Single Plane

Plane features can be extracted from point cloud (of

RGBD, stereo cameras or 3D LiDAR). Hence, we assume a

direct plane measurement given by:

z =
[

Iθ Iφ Id
]�

(44)

The measurement Jacobian w.r.t. InΠ and Id can be computed

as follows:

HΠ =

⎡
⎢⎢⎢⎣

− n̂2

n̂2
1+n̂2

2

n̂1

n̂2
1+n̂2

2

0 0

− n̂1n̂3√
n̂2

1+n̂2
2

− n̂2n̂3√
n̂2

1+n̂2
2

√
n̂2

1 + n̂2
2 0

0 0 0 1

⎤
⎥⎥⎥⎦ (45)

Hence, we get the measurement Jacobians w.r.t. the x as:

∂ z̃
∂ x̃

= HΠ

[
�I

GR̂Gn̂×� 03 03 03 03
I
GR̂Gn̂⊥

1 cos φ̂ I
GR̂Gn̂⊥

2 03×1

01×3 01×3 01×3 01×3
Gn̂� GP̂�

I
Gn̂⊥

1 cos φ̂ GP̂�
I

Gn̂⊥
2 1

]

⇒ HIk Φ(k,1) = HΠ

⎡
⎣ΓΠ1 ΓΠ2

[
03

Gn̂�δ tk

]
ΓΠ3

[
03

Gn̂�

]
ΓΠ4

⎤
⎦

where:

ΓΠ1 =

⎡
⎣ Ik

GR̂�Gn̂×�
Gn��

(
GP̂I1 +

GV̂I1δ tk − 1
2

Ggδ t2
k −GP̂Ik

)
×�

⎤
⎦G

I1R̂

ΓΠ2 =

[
Ik
GR̂�Gn̂×�Ik

GR̂
�

Φ12
Gn̂�Φ52

]
, ΓΠ3 =

[
03

Gn̂�Φ54

]

ΓΠ4 =

[
Ik
GR̂Gn̂⊥

1 cos φ̂ Ik
GR̂Gn̂⊥

2 03×1
GP̂�

Ik
Gn̂⊥

1 cos φ̂ GP̂�
Ik

Gn̂⊥
2 1

]

Gn⊥
1 =

[
−sin θ̂ cos θ̂ 0

]�
Gn⊥

2 =
[
−cos θ̂ sin φ̂ −sin θ̂ sin φ̂ cos φ̂

]�
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It is not difficult to see that the aided INS with a plane

feature will have at least 6 unobservable directions:

Nπ =
[
Nπ1 Nπ2:4 Nπ5:6

]
(46)

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I1
GR̂Gg 03×1 03×1 03×1 03×1 03×1

03×1 03×1 03×1 03×1 03×1 03×1

−�GV̂I1×�Gg 03×1 03×1 03×1
Gn̂⊥

1
Gn̂⊥

2

03×1 03×1 03×1 03×1 03×1 03×1

−�GP̂I1×�Gg Gn̂⊥
1

Gn̂⊥
2

Gn̂Π 03×1 03×1

−g 0 0 0 0 0

0 0 0 0 0 0

0 0 0 −1 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Note that Nπ1 relates to the rotation around the gravitational

direction, Nπ2:4 relates to the sensor’s global translation

while Nπ5:6 relates to the sensor motion perpendicular to

the plane’s normal direction.

B. Observability Analysis: Multiple Planes
Assuming that there are m > 1 plane features in the state

vector, we define the orientation of the plane i and the
rotation between plane i and plane j (i, j ∈ {1, . . .m}) as:

G
ΠiR̂ =

[
Gn̂⊥

Πi1
Gn̂⊥

Πi2
Gn̂Πi

]
(47)

Πi
Π jR̂ = G

ΠiR̂
�G

Π jR̂ (48)

Lemma 3. For aided INS system with m plane features in
the state vector,

• If m = 2 and the planes are not parallel, the system will
have at least 5 unobservable directions.

• If m≥ 3 and these planes’ intersections are not parallel,
the system will have at least 4 unobservable directions.

Proof. See [28].

VI. SIMULATION RESULTS

To validate our observability analysis, we perform 100

Monte Carlo simulations of visual-inertial odometry (VIO)

using point [13], line and plane features, respectively. The

simulated trajectory and different geometric features are

shown in Fig. 1, where we assume a stereo camera with

IMU is moving on spacial sine trajectories to get the feature

measurements. In the results presented below, we imple-

mented the MSCKF [13] as the VIO estimator to validate

our observability analysis, since the MSCKF has been widely

used for VINS with point features and its observability

analysis has been well understood [1], [2]. In particular,

we have compared two different versions of MSCKF: (i)

the ideal MSCKF which uses true states as the linearization

points and was shown to have correct observability properties

and thus being consistent, and (ii) standard MSCKF which

uses current state estimates as the linearization points and

was found to be overconfident (inconsistent) [1], [2]. We

compute the root mean squared error (RMSE) and the

normalized estimation error squared (NEES) to quantify

estimation accuracy and consistency [30]. The results are

shown in Fig. 1. It is clear that the standard MSCKF performs

worse than the ideal MSCKF which is consistent (though

the comparison of orientation estimates is not as apparent

as position estimates). This implies the importance of un-

derstanding system observability properties for the design of

consistent INS state estimators.

VII. CONCLUSIONS AND FUTURE WORK

We have performed observability analysis for INS aided

by generic range and/or bearing measurements with different

geometric features including points, lines and planes, which

encapsulates the vision-aided INS as a special case. In par-

ticular, in the case of point features, we have systematically

investigated the effects of global measurements on the aided

INS observability and as expected, we found that the global

measurements improve the system observability. Moreover,

we have also identified four types of degenerate motion

which should be avoided when performing aided INS. We

further generalized the observability analysis to the aided

INS with line and plane features, respectively, analytically

proved that there exist at least 5 (6) unobservable directions

with a single line (plane) feature, and for the first time,

derived the unobservable directions for multiple lines or

planes. The analysis is validated in the MSCKF-based VIO

Monte Carlo simulations. In the future, we will leverage

the presented observability analysis to design consistent

estimators for different aided INS with geometric features.
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