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Abstract— In SLAM, the size of the state vector tends to
grow when exploring unknown environments, causing the ever-
increasing computational complexity. To reduce the compu-
tational cost, one needs to continuously marginalize part of
previous states (features and/or poses). This can be achieved
by using either the null-space operation or Schur complement
based marginalization. The former was originally developed
particularly for visual-inertial odometry (VIO), while the latter
is the standard approach to reduce the state vector in bundle
adjustment (BA). In this paper, for the first time ever, we
prove that under mild assumptions (i.i.d. white Gaussian noise
model and same linearization points) these two techniques
retain the same amount of information about the state, which is
validated with real-world experiments. Moreover, based on this
key insight, we derive analytically the left null-space expressions
for multi-state constraint Kalman filter (MSCKF)-based VIO,
which is verified through Monte-Carlo simulations.

I. INTRODUCTION

It is essential for robots to perform SLAM when nav-
igating in the unknown environments. However, a SLAM
solution typically suffers from ever-increasing computational
cost. To address this issue, the marginalization technique is
often used. One common approach is to use the Schur com-
plement to marginalize out part of the states while preserving
all information about the remaining states [1]–[6]. For ex-
ample, in visual-inertial navigation systems (VINS) [1]–[3],
visual point features are continuously marginalized by the
Schur complement to prevent the state vector from growing
too large while retaining relative camera motion constraints,
which are then fused with (preintegrated) IMU measure-
ments. In the graph-based SLAM, Schur complement is also
employed to reduce the graph by marginalizing some of the
graph nodes (features and/or poses) [4]–[6]. Alternatively,
the null-space based marginalization can be used, which
was originally developed in the multi-state constraint Kalman
filter (MSCKF) [7] particularly for visual-inertial odometry
(VIO) and recently has been applied to different VINS [7]–
[16]. The basic idea is to use the left null-space of the
measurement Jacobian to marginalize feature components
from the state vector. Note that a similar idea has also been
employed in graph-based VINS [17] and our recent work on
acoustic underwater navigation [16].
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While the aforementioned work has shown that the null-
space marginalization is efficient. In this work, we move
one step further and for the first time ever, establish a link
between the null-space operation and the Schur compliment.
Besides using the null-space marginalization for features, we
also adapt the null-space marginalization for both poses and
features. In particular, the main theoretical contributions of
this work include:

• We analytically show that the null-space operation and
the Schur complement operation for feature marginal-
ization retain the same amount of information, under
the mild assumptions of independent and identically
distributed (i.i.d.) white Gaussian noise and using the
same linearization points, which motivates us to apply
the null-space operation for feature marginalization in
graph-based SLAM.

• We show that the null-space-based marginalization can
be applicable for both poses and features under the
white Gaussian noise assumption.

• We analytically drive the well-structured null-space ex-
pression for commonly-used sensors such as stereo and
RGBD cameras, which is shown to perform better than
the numerically-computed counterpart.

The rest of the paper is structured as follows: After briefly
overview of the null space and the Schur complement oper-
ations in next section, we present our main result in Section
III that the two marginalization techniques are equivalent up
to certain mild conditions. In Section IV we apply the null
space operation to both pose and feature marginalization, and
in Section V we derive the analytical null space expressions
for MSCKF. Our analysis and algorithms are validated with
simulations and experiments in Section VI. Section VII
concludes the paper and outlines the future work.

II. MARGINALIZATION

In this section, we briefly explain the null-space marginal-
ization and Schur complement operation in the context of
SLAM, which will form the basis for our ensuing analysis. In
particular, the SLAM state of a robot exploring an unknown
environment propagates according to the motion model:

xk+1 = fk(xk,uk)+wk (1)

where xk represents the robot poses at time step k with k ∈
1 . . .K, uk represents measurements from odometry, inertial
or other motion sensors, and wk is additive white Gaussian
noise with covariance Qk.The robot also observes features
based on the measurement model:

zk j = hk(xk,xf j )+nk j (2)



where zk j denotes the measurements to feature xf j ( j ∈
1 . . .N) at time step k, and nk j represents the white Gaussian
noise with covariance Rk j.

Based on (1) and (2), a SLAM solution is to estimate
both robot pose xk and all observed features xf j( j = 1 . . .N).
clearly, if N is large (which is often the case for visual
navigation), the estimation process of SLAM may become
cost prohibitive. Thus, we will marginalize all the N features.

A. Null-Space Marginalization
We first review the null-space marginalization that was

introduced in the MSCKF [7]. Specifically, the state vector
of the MSCKF is given by:

x =
[
x>I x>C1

x>C2
. . . x>Cm

]>
(3)

where xI represents the current IMU states, and xCi , i∈ 1 . . .m
represents the cloned robot (sensor) poses in m previous time
steps when the sensor get measurements according to (2).

During MSCKF update, we assume a feature xf j has
been observed m j (m j ≤ m) times by the robot within the
cloned state window. With all these measurements, we can
compute feature estimates x̂f j . By linearizing the nonlinear
measurement model (2) about the current state estimate x̂
and feature estimates x̂f j , we can stack all the linearized
measurements and multiply by the left null space U of feature
Jacobian Hf j as follows:

U>



z̃1 j
...

z̃i j
...

z̃m j j


︸ ︷︷ ︸

z̃( j)

' U>



H1 j
...

Hi j
...

Hm j j


︸ ︷︷ ︸

H( j)
x

x̃+U>



Hf1 j
...

Hfi j
...

Hfm j j


︸ ︷︷ ︸

Hf j

x̃f j +U>



n1 j
...

ni j
...

nm j j


︸ ︷︷ ︸

n( j)

(4)

where i = 1 . . .m j, z̃i j = zi j − hi(x̂Ci , x̂f j) denotes the mea-
surement residual for feature xf j at the i-th camera pose
within the window, Hi j and Hfi j denote the state and feature
Jacobians of the measurement zi j. In [7], ni j is white
Gaussian noise with covariances as Ri j = σ2IRi j , where
IRi j denotes identity matrix with same dimension as Ri j.
Since that U>Hf j = 0, the feature x̃f j is marginalized from
(4) by null space operation. Finally, stacking all the n
feature measurements observed within the sliding window,
we obtain:

z̃o = Hox̃+no (5)

where z̃o, Ho and no are all stacked measurement residuals,
state Jacobians and measurement noise from z̃( j), H( j)

x and
n( j) ( j = 1 . . .n), respectively [see (4)]. Up to this point,
we essentially have marginalized all the features by the
null-space operation (i.e., null-space marginalization), and
obtained the inferred measurement equations (5) with only
robot states involved, which is ready for EKF update.

B. Schur Complement
We optimally formulate the SLAM problem as maximum

likelihood estimation (MLE). Assuming that all the measure-
ments are independent, under the Gaussian noise assumption,

this MLE problem is equivalent to a weighted nonlinear least
squares problem [2], [18]:

min
x,xf

K

∑
k=1

∥∥xk+1− fk(xk)
∥∥2

Q−1
k
+∑

k, j

∥∥∥zk j−hk(xk,xf j )
∥∥∥2

R−1
k j

(6)

where x =
[
x>1 . . .x>K

]>
denotes all the robot poses, xf =[

x>f1
. . .x>fN

]>
denotes all the landmarks. Iterative methods,

such as Gaussian-Newton or Levenberg-Marquardt algo-
rithms, are often used to solve (6) for x̂ and x̂f.Upon this
linearization point (x̂, x̂f), the system information matrix Σ

can be computed as:

Σ =
K

∑
k=1

F>k Q−1
k Fk +∑

k, j
H>k jR

−1
k j Hk j =:

[
Σxx Σxf
Σfx Σff

]
(7)

where Fk and Hk j are the Jacobians of the system model
(1) and (2) with respect to xk and xf j , respectively, and Σ

is partitioned based on the dimension of x and xf. Since we
are more interested in the robot states, the information matrix
Σx of the robot states can be easily obtained through Schur
complement by marginalizing feature xf:

Σx = Σxx−ΣxfΣ
−1
ff Σfx (8)

which implies that in spite of the feature marginalization, the
remaining information matrix Σx contains all the information
inherited from (7) about x.

III. ANALYSIS OF NULL-SPACE MARGINALIZATION

In this section, from the information perspective, we ana-
lytically study the connection between null-space marginal-
ization and Schur complement based marginalization. To
make the presentation concise, we assume a simple SLAM
scenario: A robot takes measurements of feature xf at poses
x1 and x2 respectively while this result can be generalized
to any SLAM cases:

x2 = f1(x1)+w1 (9)
zk = hk(xk,xf)+nk (10)

where k = 1,2. Given the prior knowledge of x1 ∼
N (x̂1,P1), we can solve the SLAM problem and get the
estimate of robot pose by marginalizing the feature. Given
the linearization point (x̂1, x̂2, x̂f), the linearized system can
be written as: {

x̃2 ' F1x̃1 +w1
z̃k 'Hkx̃k +Hfkx̃f +nk

(11)

We will marginalize features with null-space (NS) and
Schur complement (SC) operations and compare the resulting
information matrix for robot poses.

A. Information Matrix After Null-Space Marginalization
We solve this problem within the MSCKF framework. The

system propagates from x1 to x2 according to (1) and clones
the state of x1. At the same time, the system stacks all the
measurements and updates at x2. The covariance matrix for
the robot poses after the propagation is:

P(x1,x2) =

[
P1 P1F>1

F1P1 F1P1F>1 +Q1

]
(12)



After linearization of the measurement model, we perform
the null-space operation:[

z̃1
z̃2

]
=

[
H1 0
0 H2

][
x̃1
x̃2

]
+

[
Hf1
Hf2

]
x̃f +

[
n1
n2

]
(13)

⇒ U>n

[
z̃1
z̃2

]
= U>n Hx

[
x̃1
x̃2

]
+U>n

[
n1
n2

]
(14)

where Hx =

[
H1 0
0 H2

]
and Hf =

[
Hf1
Hf2

]
. Un represents the

left null space for Hf, and can be computed by QR:

Hf =
[
Ue Un

][R∆

0

]
= UeR∆ (15)

where
[
Ue Un

]
is a unitary matrix and R∆ is an upper

triangular matrix. We can get the information matrix for the
robot poses (x1,x2) after the EKF update as:

ΣNS =

[
P1 P1F>1

F1P1 F1P1F>1 +Q1

]−1

︸ ︷︷ ︸
Σ
(NS)
1

+H>x Un(U>n RUn)
−1U>n Hx︸ ︷︷ ︸

Σ
(NS)
2

(16)

where Σ
(NS)
1 and Σ

(NS)
2 denote the information from the mo-

tion model (9) and the measurement model (10), respectively.

R =

[
R1 0
0 R2

]
denotes the stacked noise covariances.

B. Information Matrix After Schur Complement
We now formulate the SLAM problem as a MLE where

cost function is given by:

J =
∥∥x1− x̂1

∥∥2
P−1

1
+
∥∥x2− f1(x1)

∥∥2
Q−1

1
+∑

2
k=1
∥∥zk−hk(xk,xf)

∥∥2
R−1

k
(17)

The information matrix ΣJ for the system can be computed
according to (7), and for simplicity, we partitioned ΣJ as:

ΣJ =

[
ΣJ1 ΣJ2
ΣJ3 ΣJ4

]
(18)

where:

ΣJ1 =

[
P1 P1F>1

F1P1 F1P1F>1 +Q1

]−1

+H>x R−1Hx (19)

ΣJ2 =

[
H>1 R−1

1 Hf1
H>2 R−1

2 Hf2

]
= H>x R−1Hf (20)

ΣJ3 =
[
H>f1R−1

1 H1 H>f2R−1
2 H2

]
= H>f R−1Hx (21)

ΣJ4 = H>f1R−1
1 Hf1 +H>f2R−1

2 Hf2 = H>f R−1Hf (22)

We marginalize the feature xf with Schur complement and
obtain the information matrix of the robot poses (x1, x2) as:

ΣSC = ΣJ1−ΣJ2Σ
−1
J4 ΣJ3 (23)

=

[
P−1

1 +F>1 Q−1
1 F1 −F>1 Q−1

1
−Q−1

1 F1 Q−1
1

]
︸ ︷︷ ︸

Σ
(SC)
1

+

H>x R−1Hx−H>x R−1Hf(H>f R−1Hf)
−1H>f R−1Hx︸ ︷︷ ︸

Σ
(SC)
2

where Σ
(SC)
1 and Σ

(SC)
2 denote the information from the

motion model (9) and measurement model (10), respectively.

C. Equivalence of Two Marginalizations

Based on the above, we present our main result:

Lemma 1. Under the i.i.d. white Gaussian noise assumption,
given the same linearization points, the information matrix
(23) after Schur complement operation is equivalent to the
information matrix (16) after null-space marginalization.

Proof. See Appendix I.

Note that since we have separated the information from the
motion model (9) and measurement model (10), this analysis
can be easily extended to multiple poses and features (see
Appendix II). We also want to point out the following:
(i) The assumption that the noise is i.i.d. white Gaussian

noise is widely used in most SLAM systems (e.g., [7],
[9], [10]). If there is a difference between the null-
space marginalization and Schur complement, it is due
to different linearization points used.

(ii) The null-space marginalization for features can be ap-
plied to pre-integration based VINS [3], [17]. We can
provide a simplified expression for the information
matrix ΣNS for robot poses after marginalization:

ΣNS =

[
P1 P1F>1

F1P1 F1P1F>1 +Q1

]−1

︸ ︷︷ ︸
Σ
(NS)
1

+
1

σ2 (U
>
n Hx)

>U>n Hx︸ ︷︷ ︸
Σ
(NS)
2

(24)

where Σ
(NS)
1 represents the information from the inertial

measurements by pre-integration, while Σ
(NS)
2 represents

the information from the visual measurements after null-
space feature marginalization. Note that for Σ

(NS)
2 , we

do not need to calculate the null space Un explicitly.
U>n Hx can be directly computed by Givens rotations.

(iii) With (42) in the proof, we find that I−UeU>e is also the
null space of the feature Jacobian Hf. Inspired by the
this finding, we propose an algorithm for constructing
analytical null space expression in Section V.

D. Computational Complexity

We further compare the computational costs for Schur
component and null-space marginalization. From the proof
we know that ΣSC

1 and ΣNS
1 undertake the same operations,

we only need to compare the computation of ΣSC
2 and ΣNS

2 .
We assume there are n features that are all tracked by
the m robot poses. Given the i.i.d. white Gaussian noise
assumption, the computational complexity are outlined in
Table I and II.

It is not difficult to see that the computation for null-
space operation is much easier. The dominant step for
Schur complement operation is Step SC3 O(mn3), while the
dominant step for null-space operation is Step NS2 O(m3n).
Since features number n is much larger than that of the robot
poses m, Step SC3 is more costly than Step NS2. Therefore,
the null-space operation is more efficient. In Step NS1,
O(mn) represents the computational complexity with Givens
rotations. Note that the complexity in Table I represents
the most general case, but if taking into account the sparse
structure of information matrix and using techniques such



TABLE I
COMPUTATIONAL COMPLEXITY FOR SCHUR COMPONENT OPERATION

Steps Operation Complexity

Step SC1 H>x Hx O(m3n)

Step SC2 H>x Hf O(m2n2)

Step SC3 H>f Hf O(mn3)

Step SC4 (H>f Hf)
−1 O(n3)

Step SC5 H>x Hf (H>f Hf)
−1 O(mn2)

Step SC6 H>x Hf (H>f Hf)
−1 H>f Hx O(m2n)

Step SC7 H>x Hx− H>x Hf (H>f Hf)
−1 H>f Hx O(m)

TABLE II
COMPUTATIONAL COMPLEXITY FOR NULL SPACE OPERATION

Steps Operation Complexity

Step NS1 U>n Hx O(mn)

Step NS2 (U>n Hx)
> U>n Hx O(m3n)

as column re-ordering in [18], the computational cost of the
Schur complement can be greatly reduced.

IV. POSE-AND-FEATURE MARGINALIZATION

We discover that the null-space marginalization can also
be applied to pose and feature marginalization. To see this,
we consider the same SLAM system (1) and (2) as before.
We want to marginalize the the pose x2 and the feature xf.
The stacked linearized system can be written as: 0

z̃1
z̃2


︸ ︷︷ ︸

z̃

'

F1
H1
0


︸ ︷︷ ︸

Hk

x̃1 +

−I 0
0 Hf1

H2 Hf2


︸ ︷︷ ︸

Hm

[
x̃2
x̃f

]
+

w1
n1
n2


︸ ︷︷ ︸

n

(25)

In order to simplify the derivation, we denote xk the state
that we are going to keep and xm the state that are going to
be marginalized, Hk and Hm are their related Jacobians. n

is the stacked noise with covariances R as

Q1 0 0
0 R1 0
0 0 R2

.

If Hm is of full column rank, then we can also use the left
null space of Um to marginalize the state xm with U>mHm = 0.
Thus we have:

U>mz̃ = U>mHkx̃k +U>mn (26)

where Um can computed by QR factorization of Hm as:

Hm =
[
Uk Um

][R∆k
0

]
(27)

The information for (26) is described as:

Σ
(NS) = P−1

1 +H>k Um(U>mRUm)−1U>mHk (28)

By Schur complement, we get the information for xk as:

Σ
(SC) = Σkk−ΣkmΣ

−1
mmΣmk (29)

where we have partitioned the information matrix Σ accord-
ing to the xk and xm as:

Σ =

[
Σkk Σkm
Σmk Σmm

]
(30)

Then we can arrive at:

Σ
(SC) = P−1

1 +H>k R−1Hk−H>k R−1Hm(H>mR−1Hm)−1H>mR−1Hk⇒

Σ
(SC) = P−1

1 +H>k
[
R−1−R−1Uk(U>k R−1Uk)

−1U>k R−1
]

Hk (31)

From (41) and (42), we can use the same proof for
Lemma 1 to prove that (28) and (31) are equivalent under
the i.i.d. assumption for the noises. Therefore, with the same
assumption, we can extend the null-space operation for both
pose and feature marginalization given that Hm is of full
column rank, which is often needed in reducing the cost of
graph SLAM (e.g., [6]).

V. ANALYTICAL NULL-SPACE

In this section, we derive an analytical expression for null
space in the MSCKF. In particular, the linearized measure-
ment model for feature xf j at time step k of the MSCKF can
be structured as follows:

z̃k =
∂hk

∂Ck xf j︸ ︷︷ ︸
HCk

∂Ck xf j

∂x︸ ︷︷ ︸
Hxk

x̃+
∂hk

∂Ck xf j︸ ︷︷ ︸
HCk

∂Ck xf j

∂xf j︸ ︷︷ ︸
Hkf j

x̃f j +nk (32)

where Ck xf j =
Ck
G R(xf j − GpCk), Hkf j =

∂
Ck xf j
∂xf j

=
Ck
G R, GpCk

and Ck
G R are position and orientation from the cloned state

xCk , HCk represents the Jacobians of the sensor measurements
(i.e., image key points) regarding to the local feature position
Ck xf j . Hence, if the sensor(s) can get the relative position
estimate Ck x̂f j of feature xf j with only one measurement, HCk
is of full column rank (e.g., stereo camera, RGBD camera).
Thus, we can assume that H−1

Ck
is the inverse (or pseudo

inverse) of HCk , then multiply by (32) we get:

H−1
Ck

z̃k = Hxk x̃+Hkf jx̃f j +H−1
Ck

nk (33)

Assuming that we have m measurements for feature xf j ,
the system can be linearized regarding to the cloned states
and features as:

H−1
C1

z̃1

H−1
C2

z̃2
...

H−1
Cm

z̃m


︸ ︷︷ ︸

z̃

=


Hx1

Hx2
...

Hxm


︸ ︷︷ ︸

Hx

x̃+


C1
G R
C2
G R

...
Cm
G R


︸ ︷︷ ︸

Hf j

x̃f j +


H−1

C1
ñ1

H−1
C2

ñ2
...

H−1
Cm

ñm


︸ ︷︷ ︸

ñ

(34)

We now can find two analytical solutions for the left null
space U of Hf j such that U>Hf j = 0.
(i) One analytical left null space solution U3m×3m is:

U = I3m×3m−
Hf jH>f j

m
(35)

Note that mI3 = H>f jHf j = ∑
m
k=1

Ck
G R

>Ck
G R.

(ii) Another analytical left null space U3(m−1)×3m is:

U> =


−C1

G R
> C2

G R
>

0 0 0
−C1

G R
>

0 C3
G R

>
0 0

... 0 0
. . . 0

−C1
G R

>
0 0 0 Cm

G R
>

 (36)



Note that many other null spaces can be formulated. Com-
pared with (35), (36) has fewer elements and a lower
dimension, thus less computation cost. Thus, it is used in
our experiments.

VI. EXPERIMENTAL RESULTS

In this section, we present three sets of experiments to
validate our analysis, in particular, Lemma 1 and the analyt-
ical null-space. Specifically, we evaluate with the MSCKF
on real data to show that the null-space marginalization and
Schur complement produce the same estimation accuracy.
We then examine a factor graph-based visual odometry (VO)
implementation to show that the information retained after
both operations is identical. Lastly, we compare the analytical
and numerical null-space operations implemented in the
MSCKF evaluated in Monte-Carlo simulations.

A. MSCKF Case

We use the EuRoC data sets [19] to experimentally vali-
date the equivalence of the null space and Schur compliment
operations. The datasets were created by flying a AscTex
Firefly MAV equipped with two global shutter greyscale
cameras and an ADIS16448 IMU through two separate
indoor environments. Position and attitude ground truth
measurements are provided with the datasets from a post
processing solution aided by a VICON system or a Leica
laser tracker depending on the environment. The IMU data
was provided at 200Hz, and the image data at 20Hz. Camera
and IMU calibrations were provided.

We implemented the conventional covariance form of the
MSCKF as described in [7] which utilizes the null space
operation. We also implemented the MSCKF in information
form, so that we could use the Schur complement operation.
To clarify, we do not eliminate the feature sensitivity from
the measurement equation as in (4) and (5). Instead, after the
propagation step we obtain the total information matrix:

Σk =

[
P−1

k|k−1 0
0 0

]
+

[
H>x
H>f

]
R−1 [Hx Hf

]
=

[
Axx Axf
Afx Aff

]
(37)

We then obtain the updated covariance matrix and state
correction from:

Pk|k =
(

Axx−AxfA−1
ff Afx

)−1
(38)

x̃k|k =
[
Pk|k −Pk|kAxfA−1

ff

][H>x
H>f

]
R−1z̃k (39)

Both filters were tuned the same, and had the same sliding
window size of 7. The filters were run side-by-side so that
the information form filter could be forced to use the same
features in the update step (although each filter performed its
own triangulation). The output of the two filters was identical
up to machine precision. Figure 1 shows the similarity in
position root mean squared error (RMSE) and normalized
estimation error squared (NEES) [20]. The former measures
the estimation consistency while the latter evaluates the
estimation accuracy.
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Fig. 1. Comparison between nullspace and Schur compliment methods for
feature marginalization in two EuRoC dataset sequences.

B. Factor Graph Case

We also implemented a simple example of a typical vision
factor (Fig. 2) to validate Lemma 1. As shown in the photo
from the KITTI odometry data set [21], the car is moving
from time step 1 to time step 2. In oder to fuse the visual
information with other sensors (eg., Lidar, GPS), we need
to get the estimate of the odometry information 1

2x and its
covariance (or its information Σ). For this single vision factor,
there is no motion model information. Therefore, we only
need to compare the visual information Σ

(SC)
2 from (23) and

Σ
(NS)
2 from (16). We choose 2 pairs of stereo images from this

dataset, extracted and matched 121 pairs of stereo features.
We then formulate the measurement model with respect
to the relative transformation 1

2x and all the features. The
information matrix after the Schur complement operation
and null space operation are shown in the Figure 2. Note
that σ2 represents the normalized image noise variance. The
differences ΣDi f f (= Σ

SC
2 − Σ

NS
2 ) have orders of magnitude

less than 10−12, which is identical to machine precision. The
differences are shown below:

ΣDi f f =
1

σ2



−5.04e−14 −1.25e−13 −1.05e−13 −4.44e−15 3.64e−14 3.05e−15

−5.15e−14 3.06e−12 −1.60e−14 9.41e−14 2.73e−15 1.17e−13

−9.26e−14 −6.39e−14 −3.09e−13 −3.77e−15 −8.33e−17 2.18e−15

6.63e−15 1.51e−13 2.22e−15 5.11e−15 −3.94e−16 2.69e−15

3.91e−14 −1.66e−16 3,33e−16 8.71e−17 −3.22e−15 −2.84e−16

1.17e−14 1.15e−13 −1.90e−15 5.22e−15 −4.99e−16 2.96e−15


C. Null-Space Comparison

In order to validate our proposed analytical null space (36),
we run 50 Monte Carlo simulations of MSCKF with both
numerical and analytical null spaces and compare the NEES
and RMSE. In particular, Figure 3 shows the average NEES



Fig. 2. A typical vision factor for visual odometry. 1
2x(2

1R,1 p2) represents the transformation from stereo camera pose 1 to pose 2, where 2
1R and 1p2

denote the rotation and translation between pose 1 and pose 2,respectively.

of 50 Monte-Carlo simulations for robot’s position, attitude
and orientation. It shows that numerical and analytical null
space solutions work well for the estimate of attitude and
velocity, and the results (average NEES) are almost the
same. However,the MSCKF with analytical null space can
generate more consistent position estimates. Similarly in
Figure 4, both null space solutions have similar accuracy
for attitude estimate, while the analytical solution generates
a more accurate position estimate. The better performance
of the proposed analytical null space is probably because the
matrix has a sparse structure and utilizes the orthogonality of
the state rotation matrix. Therefore, applying this analytical
null space is similar to adding an implicit motion constraint
to the estimator.
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Fig. 3. Average NEES of 50 Monte-Carlo Simulations for Robot’s Position,
Attitude and Velocity. The blue and red lines represent the results for the
MSCKF with numerical null space and analytical null space, respectively.
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Fig. 4. Average RMSE of 50 Monte-Carlo Simulations for Robot’s Position
and Attitude. The blue and red lines represents the results for the MSCKF
with numerical null space and analytical null space, respectively.

VII. CONCLUSIONS AND FUTURE WORK

We have analytically shown that the null-space marginal-
ization and Schur complement preserve the same information

about the remaining states under certain mild assumption
(i.i.d. Gaussian noise model and same linearization points).
This validates the application of null space marginalization
to graph SLAM for potential efficiency gain. Moreover,
we have offered the analytical null space expression for
commonly used sensors such as stereo and RGBD cameras,
which has been shown to have better performance than the
numerically computed one. As for the future work, we plan
to apply the null-space marginalization to a broader family
of estimation problems that require marginalization to gain
better efficiency.

APPENDIX I
PROOF OF LEMMA 1

To show Σ
(NS)
1 = Σ

(SC)
1 , matrix inversion lemma yields,

Σ
(NS)
1 =

[
P1 P1F>1

F1P1 F1P1F>1 +Q1

]−1

=

[
P−1

1 +F>1 Q−1
1 F1 −F>1 Q−1

1
−Q−1

1 F1 Q−1
1

]
= Σ

(SC)
1 (40)

To show Σ
(NS)
2 = Σ

(SC)
2 , we consider the following cases:

1) Case I: We start with Rk = σ2IRk , where σ2 is the
noise variance and IRk is an identity matrix with size of Rk.
Under the assumption of i.i.d. Gaussian noise, we can easily
get the stacked noise covariances as R = σ2I. Then, from
(15) (16) and (23), we have:

Σ
(SC)
2 = H>x

[
R−1−R−1Ue(U>e R−1Ue)

−1U>e R−1
]

Hx

= H>x

[
1

σ2 (I−UeU>e )
]

Hx (41)

Σ
(NS)
2 = H>x

[
Un(U>n RUn)

−1U>n
]

Hx

= H>x

[
1

σ2 UnU>n

]
Hx (42)

From QR, we know UeU>e +UnU>n = I. Thus, upon the same
linearization point, we have Σ

(SC)
2 = Σ

(NS)
2 . Therefore, we

conclude that (23) and (16) are equivalent, that is: informa-
tion from NS operation equals to that with SC operation.

2) Case II: If the noise covariances matrix Rk are full
matrix, we can perform pre-whitening for the measurement
equations before the null space operation. Since Rk is sym-
metrical, positive and definite, we can factorized Rk as:

Rk = VΛV> = (VΛ
1
2 )(VΛ

1
2 )> = V̂V̂> (43)

⇒ V̂−1Rk(V̂>)−1 = IΛ (44)



where Λ is a diagonal matrix and V̂ = VΛ
1
2 . Left multiplica-

tion of V̂−1 to the linearized measurement equation yields:

V̂−1z̃k︸ ︷︷ ︸
žk

= V̂−1Hk︸ ︷︷ ︸
Ȟk

x̃k + V̂−1Hfk︸ ︷︷ ︸
Ȟfk

x̃f + V̂−1nk︸ ︷︷ ︸
ňk

(45)

After pre-whitening, the new measurement noise becomes
ňk ∼ N (0,IΛ), where IΛ is identity matrix. Then, we can
follow the same steps in case I with new Jacobians in (45).

APPENDIX II
MARGINALIZATION OF MULTI-POSES AND FEATURES

We first solve the information matrix with null space
operation ΣNS according to (16):

ΣNS = Σ
(NS)
1 +Σ

(NS)
2 (46)

where Σ
(NS)
1 and Σ

(NS)
2 denote the information from multiple

poses and features, respectively. We know that the inverse
of state covariances after K steps of propagation (Px)

−1 =

Σ
(NS)
1 , and Px is:

Px =



P1 P1F>1 0 0 0
F1P1 P2|1 P2|1F>2 0 0

0 F2P2|1 P3|2
. . . 0

0 0
. . .

. . . PK−1|K−2F>K−1
0 0 0 FK−1PK−1|K−2 PK|K−1


(47)

where Pk+1|k = FkPk|k−1F>k +Qk, where k = 2 . . .K−1. The
information Σ

(NS)
1 from features j = 1 . . .N can be expressed

as follows:

Σ
(NS)
2 = ∑

N
j=1 Σ

(NS j)
2 = ∑

N
j=1 H( j)>

x U( j)
n (U( j)>

n R( j)U( j)
n )−1U( j)>

n H( j)
x (48)

where (·)( j) represents the corresponding parameters regard-
ing to the feature xf j . Similarly, we can solve the information
matrix in MLE formulation with Schur complement opera-
tion ΣSC as follows:

ΣSC = Σ
(SC)
1 +Σ

(SC)
2 (49)

where Σ
(SC)
1 and Σ

(SC)
2 denote the information from poses

and features after Schur complement operation, respectively.

Σ
(SC)
1 =



P−1
1 +F>1 Q−1

1 F1 −F>1 Q−1
1 0 0 0

−Q−1
1 F1 Q−1

1 +F>2 Q−1
2 F2 −F>2 Q−1

2 0 0

0 −Q−1
2 F2 Q−1

2 +F>3 Q−1
3 F3

. . . 0

0 0
. . . . . . −F>K−1Q−1

K−1
0 0 0 −Q−1

K−1FK−1 Q−1
K−1


(50)

The matrix Σ
SC
2 can be written as:

Σ
(SC)
2 =

N

∑
j=1

Σ
(SC j)
2 =

N

∑
j=1

[
H( j)>

x

[
(R( j))−1

− (R( j))−1U( j)
e [U( j)>

e (R( j))−1U( j)
e ]−1U( j)>

e (R( j))−1
]
H( j)

x

] (51)

Σ
(NS)
1 = P−1

x = Σ
(SC)
1 can be proved by induction. Besides,

from the proof for a single feature xf j , we can have Σ
(NS j)
2 =

Σ
(SC j)
2 . (48) and (51) are just the summation of each feature’s

information. Therefore, they are also equivalent.
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