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I. INTRODUCTION

Due to increasing proliferation of autonomous vehicles,
securing robot navigation against malicious attacks becomes
a matter of urgent societal interest, because attackers can fool
these vehicles by manipulating their sensors, exposing us to
unprecedented vulnerabilities and ever-increasing possibili-
ties for malicious attacks. To address this issue, we seek
to secure state estimation for stochastic nonlinear systems
with the particular application to map-based localization. In
particular, based on the MCC-KF [1] [2], we first perform in-
depth analysis of the maximum correntropy criterion (MCC)-
based EKF. Then, we analytically derive the weighted MCC-
EKF (WMCC-EKF) that shows to improve accuracy and
robustness to unbounded attacks as compared to the state-
of-the-art methods. Different with [3], the proposed WMCC-
EKF is derived for nonlinear measurement model and the
weights are determined partially according to the known
noise level. Furthermore, as a conservative solution, we
generalize the secure estimation algorithm [4] to nonlinear
systems and develop the Secure Estimation (SE)-EKF that
integrates the attack detection based on £(¢;)-optimization
within a sliding-window filtering framework. The proposed
secure EKFs are validated through both Monte-Carlo simu-
lations and experiments on real datasets.

II. PROBLEM STATEMENT

Consider a nonlinear system with measurements possibly
attacked by adversaries:

Xpep1 = f(xg,wy) )
Yirr = () Fmgpg+agg )
Zigl = Yipl — A1 = h(Xpyp1) +0pyg 3)

where x; € R"*! represents the system states at the time step
k, f represents the system dynamic model and w is the input
white Gaussian noise with covariance Q. y € R?*! denotes
the measurements from p sensors, h represents the nonlinear
measurement model function. a € RP*! denotes the attack
signals and is assumed to be sparse vector that at least one
sensor cannot be attacked. We also define z € RP*! as the
un-attacked output. n € R”*! represents zero-mean Gaussian
white noises with covariance R = diag{o}...c?...0;},
where 0;,i = 1... p represents the i-th sensor’s noise variance
and diag{-} is the diagonal matrix form. If the R is a full (not
diagonal or block diagonal) matrix, a noise pre-whitening
operation (see [5]) can be performed to transform R into
diagonal form. The corresponding linearized system can be

The authors are with the Department of Mechanical Engineering,
University of Delaware, Newark, DE 19716, USA. Email: {yuyang,
ghuang}@udel.edu

computed as follows:

ik+1 ~ Fkik =+ kak (4)
Vi1 = HepXeq+megg +aggg )
Zppr ~ Hip X gy (6)

where X = X — X denotes the error states, the F; and Gy
represent the Jacobians regarding to the state x; and the
noise w; respectively. ¥ denotes the measurement residual,
while Z describes the un-attacked measurement residual.
H; | represents the measurement Jacobian with respect to
the state Xz .

It is important to note that, instead of assuming a fixed set
of attacked sensors [6], [7], we consider that the attacker can
attack different sensors randomly at different time steps. Note
also that as compared to [4], instead of assuming that less
than a half of the sensors can be attacked, we only assume
that at least one bearing or range sensor is not attacked.

III. WEIGHTED MAXIMUM CORRENTROPY CRITERION
(WMCC)-BASED FILTERS

Based on maximum Correntropy criterion [1], [2], given
the initial state in the form of Gaussian distribution,
A (X0/0,Po), the propagation of WMCC-EKEF filter can be
derived as:

K1k = F(Xye, 0) @)
P = FPyF + GQG| @®)

Then, EKF-like update can be written as:
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Note that Dy, is a diagonal matrix computed based on
the current measurements, which serves as a weight matrix
for the measurement information. Hence, we will inspect
WMCC-EKF from an information perspective. Compared to
the MCC-EKF [2], the information matrix for the WMCC-



EKF can be written as:
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where X,,; and X,, denote the information from motion

model (1) and the measurement model (2), respectively. Note

H] , H
that dy—*E
Ok .
from the i-th sensor’s measurement, and thus, X, in (17) can
be seen as the sum of single information matrix from all the
p sensors. If the i-th sensor is attacked, d; 41 will decrease
exponentially and the corresponding information contribution
HIk+]Hi,k+l
dijy1——F——
ik+1 . . . .
process will not affect the information contribution from

other sensors. Therefore, the WMCC-EKEF is able to utilize
the information from un-attacked sensor measurements.

represents the information contribution

will be dramatically reduced. However, this

IV. SECURE ESTIMATION (SE)-EKF

Ideally, we would like to identify the attacked measure-
ments so that we can ensure estimation security by excluding
them from the EKF update. To this end, we introduce the
Secure-estimation (SE)-EKF by generalizing the SE-KF [4]
to the nonlinear system under consideration. We define the
state vector with window size N at time step k as:

T
XkT—NJrl XkaN] (18)
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where x; represents the current robot state, x;_; represents
the cloned robot state at time step k—i,i € {1...N}. Thus,
Xi—n 1is the oldest cloned state. Let Fy_; ;_n represent the
state transition matrix from cloned state X;_y to the current
robot state X;. Thus, stacked the observation can be written
regarding to the first state in the window as:
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where Z represents the stacked measurement residuals, and
E denotes the sum of stacked noise and attack vectors, ®
denotes the stacked state transition matrix from X;_» to each
state in the window. Similar to [4] we apply left null space
operation to ® to simplify (19). Let U, be the left null space
of &, that is U} ® = 0, then we can have:

Z,=U/Z=UJE (20)
where U, can be computed from the QR decomposition of
®. Given the strong sparse attack assumption that less than
a half of the all the sensors can be attacked, E can be solved
by formulating the following optimization problem with ¢;
norm regularization as:

E= argmin U 21

T 2
Z,~ U E| +A|E,,

where A is the regularization parameter.

With the attack identification, the SE-EKF algorithm will
be able to remove the attacked measurements and perform
the state update only with un-attacked measurements [5].

V. EXPERIMENTAL RESULTS

We have extensively validated the proposed proposed
WMCC-EKF and SE-EKF in map-based localization through
both 50 Monte-Carlo simulations and real experiments using
the Victoria Park dataset.
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Fig. 1. Monte Carlo results of the proposed WMCC-EKF and SE-EKF.
E o0
= S B e =
Standard EKF 'WMCC-EKF SE-EKF
20 7;":" 20 20
) 20 )
T e T
2 20 2
) 20 20 ) 20
T e ww ww T
¢ PN 5 * R
g o S o T 0 [t
< “n [TTTIYERYNT ey
T o aw ww T
tme step e step e step
(@) ) [C]
Fig. 2. Estimated trajectories of the WMCC-EKF, SE-EKF and the

Standard EKF with synthetic attacks on the Victoria Park dataset.
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