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I. INTRODUCTION

Due to increasing proliferation of autonomous vehicles,
securing robot navigation against malicious attacks becomes
a matter of urgent societal interest, because attackers can fool
these vehicles by manipulating their sensors, exposing us to
unprecedented vulnerabilities and ever-increasing possibili-
ties for malicious attacks. To address this issue, we seek
to secure state estimation for stochastic nonlinear systems
with the particular application to map-based localization. In
particular, based on the MCC-KF [1] [2], we first perform in-
depth analysis of the maximum correntropy criterion (MCC)-
based EKF. Then, we analytically derive the weighted MCC-
EKF (WMCC-EKF) that shows to improve accuracy and
robustness to unbounded attacks as compared to the state-
of-the-art methods. Different with [3], the proposed WMCC-
EKF is derived for nonlinear measurement model and the
weights are determined partially according to the known
noise level. Furthermore, as a conservative solution, we
generalize the secure estimation algorithm [4] to nonlinear
systems and develop the Secure Estimation (SE)-EKF that
integrates the attack detection based on `0(`1)-optimization
within a sliding-window filtering framework. The proposed
secure EKFs are validated through both Monte-Carlo simu-
lations and experiments on real datasets.

II. PROBLEM STATEMENT

Consider a nonlinear system with measurements possibly
attacked by adversaries:

xk+1 = f(xk,wk) (1)
yk+1 = h(xk+1)+nk+1 +ak+1 (2)
zk+1 = yk+1−ak+1 = h(xk+1)+nk+1 (3)

where xk ∈Rm×1 represents the system states at the time step
k, f represents the system dynamic model and w is the input
white Gaussian noise with covariance Q. y ∈ Rp×1 denotes
the measurements from p sensors, h represents the nonlinear
measurement model function. a ∈ Rp×1 denotes the attack
signals and is assumed to be sparse vector that at least one
sensor cannot be attacked. We also define z ∈ Rp×1 as the
un-attacked output. n∈Rp×1 represents zero-mean Gaussian
white noises with covariance R = diag{σ2

1 . . .σ
2
i . . .σ

2
p},

where σi, i= 1 . . . p represents the i-th sensor’s noise variance
and diag{·} is the diagonal matrix form. If the R is a full (not
diagonal or block diagonal) matrix, a noise pre-whitening
operation (see [5]) can be performed to transform R into
diagonal form. The corresponding linearized system can be
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computed as follows:

x̃k+1 ' Fkx̃k +Gkwk (4)
ỹk+1 ' Hk+1x̃k+1 +nk+1 +ak+1 (5)
z̃k+1 ' Hk+1x̃k+1 +nk+1 (6)

where x̃ = x− x̂ denotes the error states, the Fk and Gk
represent the Jacobians regarding to the state xk and the
noise wk respectively. ỹ denotes the measurement residual,
while z̃ describes the un-attacked measurement residual.
Hk+1 represents the measurement Jacobian with respect to
the state xk+1.

It is important to note that, instead of assuming a fixed set
of attacked sensors [6], [7], we consider that the attacker can
attack different sensors randomly at different time steps. Note
also that as compared to [4], instead of assuming that less
than a half of the sensors can be attacked, we only assume
that at least one bearing or range sensor is not attacked.

III. WEIGHTED MAXIMUM CORRENTROPY CRITERION
(WMCC)-BASED FILTERS

Based on maximum Correntropy criterion [1], [2], given
the initial state in the form of Gaussian distribution,
N (x̂0|0,P0), the propagation of WMCC-EKF filter can be
derived as:

x̂k+1|k = f(x̂k|k,0) (7)

Pk+1|k = FkPk|kF>k +GkQkG>k (8)

Then, EKF-like update can be written as:

ŷk+1|k = ẑk+1|k = h(x̂k+1|k) (9)

di,k+1 =
Gσ̂i,k+1

(∥∥yi,k+1−hi,k+1(xk+1)
∥∥)

Gσ̂0,k+1

(∥∥∥xk+1− f(x̂k|k,0)
∥∥∥

P−1
k+1|k

) (10)

Dk+1 = diag{d1,k+1, . . . ,di,k+1, . . . ,dp,k+1} (11)

Kk+1|k =
[
H>k+1Dk+1R−1

k+1Hk+1 +P−1
k+1|k

]−1
H>k+1Dk+1R−1

k+1 (12)

= Pk+1|kH>k+1

(
Hk+1Pk+1|kH>k+1 +Rk+1D−1

k+1

)−1
(13)

x̂k+1|k+1 = x̂k+1|k +Kk+1|k

(
yk+1− ŷk+1|k

)
(14)

Pk+1|k+1 =
[
H>k+1Dk+1R−1

k+1Hk+1 +P−1
k+1|k

]−1
(15)

Note that Dk+1 is a diagonal matrix computed based on
the current measurements, which serves as a weight matrix
for the measurement information. Hence, we will inspect
WMCC-EKF from an information perspective. Compared to
the MCC-EKF [2], the information matrix for the WMCC-



EKF can be written as:

P−1
k+1|k+1 = P−1

k+1|k +H>k+1(Dk+1R−1
k+1)Hk+1 (16)

= P−1
k+1|k︸ ︷︷ ︸
Σw1

+
p

∑
i=1

di,k+1
H>i,k+1Hi,k+1

σ2
i,k+1︸ ︷︷ ︸

Σw2

(17)

where Σw1 and Σw2 denote the information from motion
model (1) and the measurement model (2), respectively. Note

that di,k+1
H>i,k+1Hi,k+1

σ2
i,k+1

represents the information contribution

from the i-th sensor’s measurement, and thus, Σw2 in (17) can
be seen as the sum of single information matrix from all the
p sensors. If the i-th sensor is attacked, di,k+1 will decrease
exponentially and the corresponding information contribution

di,k+1
H>i,k+1Hi,k+1

σ2
i,k+1

will be dramatically reduced. However, this

process will not affect the information contribution from
other sensors. Therefore, the WMCC-EKF is able to utilize
the information from un-attacked sensor measurements.

IV. SECURE ESTIMATION (SE)-EKF
Ideally, we would like to identify the attacked measure-

ments so that we can ensure estimation security by excluding
them from the EKF update. To this end, we introduce the
Secure-estimation (SE)-EKF by generalizing the SE-KF [4]
to the nonlinear system under consideration. We define the
state vector with window size N at time step k as:

xck =
[
x>k x>k−1 · · · x>k−N+1 x>k−N

]>
(18)

where xk represents the current robot state, xk−i represents
the cloned robot state at time step k− i, i ∈ {1 . . .N}. Thus,
xk−N is the oldest cloned state. Let Fk−1,k−N represent the
state transition matrix from cloned state x̃k−N to the current
robot state x̃k. Thus, stacked the observation can be written
regarding to the first state in the window as:

z̃k
z̃k−1

...
z̃k−N


︸ ︷︷ ︸

Z̃

'


H0

Hk−1
...

Hk−N




Fk,k−N
Fk−1,k−N

...
I


︸ ︷︷ ︸

Φ

x̃k−N +


n0

nk−1
...

nk−N

+


a0
ak−1

...
ak−N


︸ ︷︷ ︸

E

(19)

where Z̃ represents the stacked measurement residuals, and
E denotes the sum of stacked noise and attack vectors, Φ

denotes the stacked state transition matrix from x̃k−N to each
state in the window. Similar to [4] we apply left null space
operation to Φ to simplify (19). Let Un be the left null space
of Φ, that is U>n Φ = 0, then we can have:

Zo = U>n Z = U>n E (20)

where Un can be computed from the QR decomposition of
Φ. Given the strong sparse attack assumption that less than
a half of the all the sensors can be attacked, E can be solved
by formulating the following optimization problem with `1
norm regularization as:

Ê = argmin
E

[∥∥∥Zo−U>n E
∥∥∥2

2
+λ‖E‖`1

]
(21)

where λ is the regularization parameter.
With the attack identification, the SE-EKF algorithm will

be able to remove the attacked measurements and perform
the state update only with un-attacked measurements [5].

V. EXPERIMENTAL RESULTS

We have extensively validated the proposed proposed
WMCC-EKF and SE-EKF in map-based localization through
both 50 Monte-Carlo simulations and real experiments using
the Victoria Park dataset.
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Fig. 1. Monte Carlo results of the proposed WMCC-EKF and SE-EKF.

Fig. 2. Estimated trajectories of the WMCC-EKF, SE-EKF and the
Standard EKF with synthetic attacks on the Victoria Park dataset.
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