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Abstract— An array of heterogeneous sensors available on
most autonomous robots are widely used for state estimation
and environmental perception, requiring accurate calibration
of intrinsic, spatial, and temporal sensing parameters. In
this paper, we present a holistic non-linear least squares
(NLS) based multi-sensor calibration system, which exploits
high-rate inertial navigation and can handle a multitude of
asynchronous sensors commonly found on robots (e.g., IMU,
cameras, LiDARs, and wheel odometry) while requiring only
initial calibration guesses. We perform extensive simulations to
verify both the system’s accuracy, consistency, and performance
in the ideal motion case. In particular, we perform in-depth
study on how planar motion can cause calibration degeneracy
and how it directly impacts our ability to calibrate parameters,
which is of practical significance for unmanned ground vehicles
(UGVs). To demonstrate the practical challenges in performing
calibration in these degenerate scenarios, we further evaluate
the proposed system on a series of real-world datasets and
compare against existing state-of-the-art calibration toolboxes.

I. INTRODUCTION AND RELATED WORK

In an autonomous navigation system, inertial measure-
ment units (IMUs), multiple cameras, range sensors (e.g.,
LiDARs), and wheel encoders are widely used together to
estimate the robot’s 6 degree-of-freedom (DoF) pose (po-
sition and orientation) through perceiving the environment
and sensing its own kinematic motion. For instance, IMUs
and wheel encoders can directly measure the robot’s motion
(e.g., angular and linear velocity, and linear acceleration),
which can provide accurate state estimation if fused with
cameras [1], [2] or LiDARs [3], [4]. In addition, texture-rich
images from cameras and accurate 3D points from LiDARs
can be jointly used for obstacle detection and environment
reconstruction [5]. To properly fuse measurements from these
heterogeneous multi-modal sensors in order to accomplish
the above tasks, it is essential to accurately calibrate both
the spatial and temporal relationships for these sensors.

The spatial (extrinsic) calibration problem refers to es-
timating the 6 DoF rigid transformation between pairs of
sensors (e.g., IMU-camera, camera-LiDAR, and camera-
wheel), while the temporal calibration is to find the time
offset between sensor measurement clock frame of references
which can occur due to asynchronous hardware triggering or
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TABLE I: Comparison of different multi-sensor calibration
algorithms in the literature. toff refers to time offset cali-
bration between sensors.

Algorithm IMU Camera LiDAR Wheel toff Target
iCalib × × × × × ×

Kalibr [6] × × × ×
COC [7] × × ×

MSG9CAL [8] × × ×
LI9Calib [9] × ×
MIMC [10] × × ×

LIC [4] × × × ×
VIWO [2] × × × ×

raw data transmission times. Both are required to accurately
fuse multi-sensor data for downstream autonomy processes
(e.g., navigation, perception).

To date, substantial research efforts [6]–[9], [11]–[15],
summarized in Table I, have been taken to address spatial
and/or temporal calibration. We here briefly review a few
notable examples. As one of the state-of-the-art methods,
Kalibr [6] is a multi-camera, multi-IMU, and IMU-camera
calibration system based on continuous-time batch estima-
tion. Both camera and IMU intrinsics, spatial-temporal pa-
rameters between IMU and cameras can be calibrated. Lv
et al. [9] adopted a B-Spline based continuous-time trajec-
tory formulation for fusing IMU and LiDAR readings with
extrinsic calibration. The point-to-surfel correspondences are
utilized to enhance the calibration accuracy, hence no specific
target is needed. Cam-Odom-Cal (COC) [7] uses a two-stage
pipeline that handles both intrinsic and extrinsic calibration
for multiple cameras and a wheel odometer. The camera
intrinsics are first calibrated using a chessboard, and the
extrinsics between the cameras and wheel odometry are
calibrated via ego-motion alignment. However, both methods
[7], [9] do not consider the temporal offset between sensors.

There also has been great interest in camera-LiDAR cali-
brations. For example, Owens et al. [8] proposed MSG-CAL,
a general framework for estimating rigid transformation
between multiple cameras and range sensors. Geometric
features (points, lines, or planes) extracted from sensor data
are used to jointly optimize a cost function yielding extrinsic
calibration between sensors. Geiger et al. [11] proposed a
single-shot camera-LiDAR extrinsic calibration. However,
many chessboards are needed in practice and should be
placed carefully to ensure that the optimization problem
is well-posed for all degrees of freedom. Similarly, Zhou
et al. [12] proposed a camera-LiDAR extrinsic calibration
by using line-to-plane correspondences with one calibration
board. Although camera-LiDAR extrinsics can be acquired
through these works [8], [11], [12], none of these algorithms
support temporal calibration. They rely on overlapping FoV
among cameras and LiDARs and are unable to handle pro-
prioceptive sensors (e.g., IMU and wheel odometry) which



require motion of the platform. A particular challenge for
most existing works is the calibration of under-actuated
robots (e.g., unmanned ground vehicles (UGVs), autonomous
driving cars), which as explored later in this work, presents
a myriad of issues when trying to calibrate all parameters.

While the aforementioned works are all based on batch
nonlinear least squares (NLS) optimization for offline calibra-
tion, there exists significant work focusing on online calibra-
tion based on Bayes filtering and on identifying degenerate
motions which may cause sensing parameters to become
unobservable. For instance, Eckenhoff et al. [10] devel-
oped a multi-state constraint Kalman filter (MSCKF) based
multi-IMU multi-camera system with full online calibration,
including camera intrinsics, IMU-camera spatial-temporal
parameters, and IMU-IMU spatial-temporal parameters. Zuo
et al. [3], [4] proposed a LiDAR-IMU-camera fusion frame-
work with full online calibration and identified degenerate
motion cases for LiDAR-IMU calibration when leveraging
plane features. Lee et al. [2] introduced the visual-inertial
wheel odometry (VIWO) which performs online spatial-
temporal calibration between IMU-camera and IMU-wheel
odometry, and wheel intrinsics, and examines the system
observability as well. On the other hand, the authors of [16]–
[18] have particularly studied degenerate motion for camera-
IMU systems and IMU intrinsic calibration which has lead
to the identification of many conditions where calibration of
all parameters is unlikely. Note that all these methods require
high-fidelity initial guesses for calibrations, while this work
assumes only some initial guesses available and seeks to find
the globally optimal solution via batch NLS.

Specifically, in this work, we develop a general unified
multi-sensor calibration algorithm within the NLS estimation
framework to find optimal calibration of the camera intrin-
sics, spatial-temporal parameters for camera-IMU, LiDAR-
IMU, and wheel-IMU asynchronous sensors:

• We develop a holistic multi-sensor calibration system
leveraging high-rate inertial motion (termed iCalib)
for asynchronous IMU, cameras, LiDAR and wheel
odometry sensors, and show that under general motions
the proposed system is able to accurately calibrate the
spacial-temporal parameters between all the sensors.

• We develop two different interpolation schemes based
on IMU kinematics or bounding poses to fuse hetero-
geneous measurements, thus enabling versatile spatial-
temporal calibration.

• We perform extensive Monte-Carlo simulation to val-
idate the proposed system and demonstrate the cali-
bration degeneracy issues both in simulation and real-
world experiments. The competing performance of the
proposed system is shown by comparing to the current
state-of-the-art toolboxes Kalibr [6] and MSG-CAL [8].

II. PROBLEM FORMULATION

A. State Vector

The state vector of our proposed inertial aided calibration
(iCalib) system consists of the inertial navigation states xI ,
a set of environmental features xF , a set of sensors’ spatial-

temporal and intrinsic calibration parameters xcalib.

x =
[
x>I0 . . . x>Ik x>F x>calib

]>
(1)

xIk =
[
G
Ik
q̄> Gp>Ik

Gv>Ik b>ωk
b>ak

]>
(2)

xF =
[
Gp>f1 . . . Gp>fm

Gp>π1
. . . Gp>πl

]>
(3)

xcalib =
[
x>CI1 . . . x>CIs x>LI x>WI

]>
(4)

xCI =
[
I
C q̄
> Ip>C tCI ζ>

]>
(5)

xLI =
[
I
Lq̄
> Ip>L tLI

]>
(6)

xWI =
[
I
W q̄
> Ip>W tWI

]>
(7)

where G
Ik
q̄ is the unit quaternion parameterizing the rotation

R(GIk q̄) = G
Ik

R from the IMU local frame {Ik} to the global
frame {G} at time tk [19], bω and ba are the gyroscope
and accelerometer biases, GvIk and GpIk are the velocity
and position of the IMU, and pf and pπ are point and plane
features, respectively. The map of environmental landmarks
xF contains m global 3D position pf for point features and
l global closet-point (CP) pπ for plane features [20], [21].

The calibration vector xcalib contains the s number of
camera-IMU calibration xCI , LiDAR-IMU spatial-temporal
calibration xLI , and the wheel-IMU spatial-temporal cali-
bration xWI . xCI consists of camera intrinsics (focal length,
camera center, and distortion parameters) and the camera-
IMU spatial-temporal parameters from each camera to IMU.
Note that the current system can be readily extended to
include multi-unsynthronized LiDARs. The time offset tSI
are defined as: tI = tS + tSI . where tI refers to IMU
clock while tS refers to sensor S’s clock with tSI denoted as
the time offset between these two timelines. Note that S ∈
{C,L,W}, denoting camera, LiDAR or wheel, respectively.

Inertial states, xIk , can be cloned at an arbitrary frequency,
but in practice we specify the camera with the highest
frequency to be the “base” of the system. All measurements
will be written as a function in respect to the true IMU
time that each state is estimating (including the base of the
system), and thus will need to handle this timeoffset between
each sensor’s measurement and this state time.

B. Kinematic-based Interpolation

Since our state, Eq. (1), contains inertial states only at
specific times, we need to be able to write our asynchronous
measurements as a function of these poses. We can related
any time to the nearest inertial state by leveraging the IMU
kinematic, GvI and Iω, to directly compute the expected
pose at our measurement time. For example, the measure-
ment from sensor S at time tS,in requires getting the pose
{GSin

R,GpSin
}. We can interpolate to this pose by first

finding how much to interpolate by in the sensor clock frame
δt = tS,in + tSI − tIk , where we have used the time offset
between the measurement clock and the IMU clock frame
which our inertial poses occur at. We can then define the
following equations:

G
Sin

R = G
Ik

RExp(Ikωδt)ISR (8)



GpSin
= GpIk + GvIkδt+ G

Sin
RIpS (9)

where Exp(·) represents the exponential operation for
SO(3) [22]. It is important to note here that this interpolation
both allows us to find the derivative in respect to both
the temporal, tSI , and spacial, {ISR, IpS} parameters. This
interpolation is only a good approximation when near the
pose we are interpolating from, thus we only leverage this
for pose measurements which occur near the inertial state
time (e.g., our base camera sensor measurements).

C. Pose-based Interpolation
Another more conventional pose interpolation scheme is to

find a pose between two bounding inertial states. We leverage
this for LiDAR and non-base cameras which are more likely
to have large amounts of interpolation. To find the sensor
pose {GSin

R,GpSin
} with the two bounding IMU states xIk

and xIk+1
we can define the following:

G
Sin

R = G
Ik

RExp(λLog(IkIk+1
R))ISR (10)

GpSin
= GpIk + G

Ik
R(λIkpIk+1

) + G
Sin

RIpS (11)
λ = (tS,in + tSI − tIk)/(tIk+1

− tIk) (12)

where tS,in and tSI are the measurement time and sensor
time offset, {ISR, IpS} represents the sensor rigid trans-
formation to IMU frame, and Log(·) represents the log
operation for SO(3) [22]. Same as before, this interpolation
allows us to find derivatives in respect to these calibration
parameters and thus perform calibration. This interpolation
scheme is used for the majority of measurements which do
not occur near the IMU pose time like the base camera.

D. Nonlinear Least Squares Optimization
We next overview the optimization problem we wish to

solve and in the following section discuss the individual
cost function definitions. Given sensor S measurements with
additive white Gaussian noise, we have:

zS = hS(x) + nS ,nS ∼ N (0,RS) (13)

Then, we can formulate the NLS as:

min
x

∑
‖zS − hS(x)‖2

R−1
S

(14)

An initial guess x̂	 is needed to start the optimization. After
solving incremental state correction δx, we can refine the
state estimates by x̂⊕ = x̂	�x̃, where � represents the state
manifold update [22]. In summary, we have the following
NLS equivalent to maximum likelihood estimation (MLE):

min
x

∑
CI +

∑
CC +

∑
CL +

∑
CW (15)

Solving this problem via iterative algorithms results in the
optimal IMU states, the visual point features, LiDAR plane
features and all the calibration parameters needed.

III. INERTIAL AIDED MULTI-SENSOR CALIBRATION

A. IMU Measurements
The IMU cost function is modeled after ACI2 [23], where

the IMU directly reads the angular velocity ωm and linear
acceleration am and is described as:

ωm = Iω + bg + ng, am = Ia + ba + na − I
GRGg (16)

where Gg = [0 0 99.81]>, and ng and na are continuous-
time Gaussian noises that contaminate the IMU readings.
The IMU dynamic model can thus be defined as [19], [24]:

G
I

˙̄q =
1

2
Ω(ω)GI q̄,

GṗI = GvI

Gv̇I = G
I RIa, ḃg = nwg, ḃa = nwa (17)

where ω and a denote the local angular velocity and linear
acceleration, nwg and nwa are the white Gaussian noises
driving the gyroscope and accelerometer biases. Ω(ω) :=[

0 −ω>

ω −bωc

]
and b·c represents a skew symmetric matrix.

Between two base camera time tk and tk+1 we integrate the
IMU measurements as:

∆q̄ , hq(xIk ,xIk+1
) = Ik

G q̄ ⊗
G
Ik+1

q̄

∆p , hp(xIk ,xIk+1
) = G

Ik
R>
(
GpIk+1

−GpIk−GvIk∆t− 1

2
Gg∆t2

)
∆v , hv(xIk ,xIk+1

) = G
Ik

R>
(
GvIk+1

− GvIk − Gg∆t
)

∆bg, bgk+1
− bgk , ∆ba , bak+1

− bak

where ∆t = tk+1 − tk. Hence, the IMU measurements
following ACI2 can be constructed as:

∆q̄

∆p

∆v

∆b

∆b


︸ ︷︷ ︸
zIk+1

'


hq(xIk ,xIk+1

)⊗ q̄−1(Hq
bg

∆bgk)

hp(xIk ,xIk+1
)−Hp

bg
∆bgk −Hp

ag∆bak
hv(xIk ,xIk+1

)−Hv
bg

∆bgk −Hv
ag∆bak

bgk+1
− bgk

bak+1
− bak

︸ ︷︷ ︸
hI(xIk

,xIk+1
)

+nIk+1
(18)

where nIk+1
∼ N (0,QIk+1

) represents the integrated IMU
noise [23], ∆bg and ∆ba are the bias linearization correc-
tion terms, and zIk+1

is the integrated IMU measurements
connecting state xIk and state xIk+1

, and Hz
y represents the

Jacobians of state z to variable y. Finally, the corresponding
IMU cost function can be written as:

CIk+1
, ‖zIk+1

− hI(xIk ,xk+1)‖2
Q−1

Ik+1

(19)

B. Visual Point Measurements
Assuming a visual feature that has been observed by a

camera, we can write the visual-bearing measurements (i.e.,
pixel coordinates [1]) as the following:

zC = hd(hp(ht(
G
Cin

R, GpCin
,Gpf )), ζ) + nC (20)

, hC(GIinR,GpIin ,xCI ,
Gpf ) + nC (21)

where zC is the raw uv pixel coordinate, nC ∼ N (0,QC)
the raw pixel noise, Gpf the estimated landmark position
in {G}, and {GIinR,GpIin} denotes the current interpo-
lated pose in {G}. The measurement functions hd, hp and
ht correspond to the intrinsic distortion, projection, and
transformation functions and the corresponding measurement
Jacobians can be computed through a simple chainrule. hC
represents the combination of these functions hd, hp, and ht.
We also note here that an additional chainrule needs to be
taken in respect to the spacial and temporal sensor parameters
that the interpolated poses {GIinR,GpIin} contain. Hence, the
visual point cost can be formulated as:

CC , ‖zC − hC(GIinR,GpIin ,xCI ,
Gpf )‖2

Q−1
C

(22)



TABLE II: Simulation parameters used. Note that if there
are multiple sensors they are separated with a backslash.

Parameter Value Parameter Value

IMU Freq. (hz) 300 Max Cam Pts 100
Cam Freq. (hz) 20/10/10 Cam Time offset (ms) 10/-10/0

LiDAR Freq. (hz) 8 LiDAR Time offset (ms) -10
Wheel Freq. (hz) 70 Wheel Time offset (ms) 0

LiDAR Rings 16 LiDAR Range Noise (m) 0.03
Pixel Proj. (px) 1 Wheel. White Noise 0.03

C. LiDAR Plane Measurements
In structural environments, there are quite a few plane

features that can be extracted. Leveraging the closest point
(CP) plane representation [20], [21] and the sliding window
based plane feature extraction [4], we can construct the point-
on-plane cost as:

zL , hL(GIinR,GpIin ,xLI ,
Gpπ,nL) (23)

=
Linp>π
‖Linpπ‖

(
Linpfm − nL

)
− ‖Linpπ‖ (24)

where Linpfm represents the measured 3D LiDAR points on
the plane Gpπ with nL ∼ N (0,QL) denoting the LiDAR
measurement noise. The CP plane in interpolated LiDAR
frame {Lin}, Linpπ = Lindπ

Linnπ , can be obtained as:[
Linnπ
Lindπ

]
=

[
Lin

G R 03×1

−Gp>Lin
1

][
Gnπ
Gdπ

]
(25)

Hence, the cost function for LiDAR plane measurements can
be written as:

CL , ‖zL − hL(GIinR,GpIin ,xLI ,
Gpπ,0)‖2

Q−1
L

(26)

D. Wheel Odometer Measurements
We can additionally consider a ground vehicle equipped

with a differential drive system, where we can integrate left
and right wheels velocity readings from tk to tk+1 and obtain
a 2D relative pose measurement (yaw and x, y translation in
wheel frame) as:

zW ,hW (xIin,k
,xIin,k+1

,xWI) + nW (27)

=

[
e>3 Log(WI R

Iin,k+1

G RG
Iin,k

RI
WR)

Λ(WI R
Iin,k

G R(GpIin,k+1
+ G
Iin,k+1

RIpW −GpIin,k
) +WpI)

]
+ nW

where nW ∼ N (0,QW ) is constructed from the integration
process [2], Λ = [e1 e2]>, ei is the i-th standard unit basis
vector, and we have performed our integration between two
interpolated poses which are a function of time. The cost
function can be written as:

CW , ‖zW − hW (xIin,k
,xIin,k+1

,xWI)‖2Q−1
W

(28)

IV. MONTE-CARLO SIMULATIONS

To verify the proposed iCalib, extensive Monte-Carlo sim-
ulations are performed leveraging our previously-developed
simulator [1], [2], [25] to simulate asynchronous IMU, 3D
LiDAR, 2D wheel odometry, and cameras. Table II details
the exact simulation parameters used to generate relatively
smooth 3D trajectory in a structural room environment with
plane and point features (see Fig. 1).

Fig. 1: Left: Simulated structure environment with planes.
Visual feature points (red), LiDAR scan (blue) and trajectory
(black) can be seen. Right: A ramp is built to excite 3D mo-
tion with AuRco tags are spread around as visual landmarks.
Example camera images are shown.

Fig. 2: Temporal calibration errors of IMU-CAM, IMU-
LiDAR, IMU-Wheel and corresponding 3σ bound. Note that
only the results from the base camera are presented here.

We consider a single IMU, three cameras, one LiDAR
and wheel odometer, with the first camera acting as the base
sensor frequency for inertial state creation, afterwhich all
measurement are constructed as optimized as in Section II-
D. The calibration results from 6 Monte-Carlo runs for the
proposed system with different random noises are presented
in Figs. 2 and 3. For 3D motion trajectory shown in Fig.
2 and the top two rows of Fig. 3, the camera intrinsics,
spatial-temporal calibration for IMU-camera, IMU-LiDAR,
and IMU-wheel calibration parameters converged nicely
demonstrating the ability of the proposed system to perform
accurate spacial-temporal calibration between all sensors.

We next looked at how we are able to calibrate under pla-
nar motion which is common for ground vehicles. Previous
works [2], [4], [16] have shown that planar motion will cause
the translation along the rotation axis to be unobservable, as
well as the roll and pitch of IMU-wheel calibration [2]. The
results presented in the bottom row of Fig. 3 support this
analysis. When we simulate 2D planer motion with the same
estimator we are unable to calibrate the following: 1) the y
component of IMU-camera translation (the rotation is along y
axis in camera frame), 2) the z components of IMU-LiDAR,
3) IMU-wheel translation (the rotation is along z axis in
LiDAR and wheel frame), and 4) the roll and pitch of IMU-
wheel orientation. This verifies that in practical applications
where planar datasets are only able to be collected for a
robot, typical of ground vehicles, one should not expect
calibration to be performed successfully. One can try to
address this through using non-planar motion, as explored
in the following real-world experiments, or through cross
sensor constrains which we plan to explore in future works.
It is important that while we show, for the first time, that
these issues exist when performing calibration of all sensor
parameters, they are still present when performing pair-wise



Fig. 3: Calibration errors for IMU-CAM, IMU-LiDAR, IMU-Wheel and corresponding 3σ bounds for six different Monte-
Carlo runs. In order to save the space, only the results from base camera are presented. The bottom row of plots show the
degenerate planar motion case.

calibration on planar datasets.

V. REAL-WORLD EXPERIMENTS

We leverage a Jackal robot from Clearpath1 equipped
with a FLIR blackfly camera, microstrain 3DMGX3-25 IMU,
Intel Realsense T265 tracking camera and Velodyne VLP 16
as our experimental platform. We collected several datasets
from the environment shown in Fig. 1. A set of experiments
were first performed in a degenerate planar environment, but
we found that this was extremely unstable system due to the
introduction of unobservable calibration directions. We thus
introduced a 15-20cm tall ramp which was driven over to try
to excite more 3D motion of the Jackal. ArUco tags were
used as visual landmarks that allowed for re-observation.
The system was run until convergence with the initial time
offset guesses being set to zero, thus minimizing interpolate
errors of the base sensor. Three scenarios are tested to
validate the proposed system: 1) IMU+Camera+LiDAR with

1https://clearpathrobotics.com/

MSG-CAL [8] as the reference, 2) IMU+3Cameras with
Kalibr [6] as the reference and 3) IMU+Camera+Wheel with
manually measured reference values. Both MSG-CAL and
Kalibr calibrations were performed in ideal conditions (e.g.,
Kalibr had full 6 DoF excitation) and thus shouldn’t have
unobservable calibration parameters.

A. IMU + 1 Camera + LiDAR

We average 4 calibration dataset results from MSG-CAL
and use the average as reference. Shown in Fig. 4 (top right
two column), we transfer the proposed system’s converged
CAM-IMU and LiDAR-IMU transformations to a relative
CAM-LiDAR calibration to allow for direct comparison with
MSG-CAL. To allow comparison, we compute the orien-
tation quaternion error relative to a hand measured datum.
It can be seen that there is less than 0.5 degrees between
orientation errors and 1cm difference between translation
with time offsets converging to stable values (bottom left
two figures). Note that the z component 3σ is larger at



Fig. 4: The calibration results for the proposed system with IMU + 3CAMs, IMU+CAM+LiDAR and IMU+CAM+Wheel.
Red dotted lines represent the values from existing calibration libraries (Kalibr or MSG-CAL) while the blue dotted line
represent hand-measured values. Note that for each experiment, 6 bags are used and the best 4 results are presented.

±1.5cm and thus even though repeat runs converge with
larger variance, they fall within this conservative bound. It
can also be see that the convergence of the z component is
at a slower rate when compared to the x and y. This large
variance and slow convergence indicates that even though the
robot is driven over a ramp, to induce non-planar motion in
the z direction, there is limited information gain and thus the
calibration of the z component still suffers from unobservable
issues. While the small ramp helped with stability during
solving, these results show that it was unable to provide
an informative 3D platform motion trajectory, showing the
limitation of calibration for ground vehicles.

B. IMU + 3 Cameras
Shown in Fig. 4 (top left three columns), while all three

camera extrinsics are able to converge to the hand measured
and Kalibr references, the z component is still worst com-
pared to the x and y directions. The time offsets, Fig. 4
(bottom middle column), are able to quickly converge and
orientations (which are omitted for space) differences are
very small at 0.5 degrees. Same as in the first real-world
experiment, the difference in the z component is likely due
to insufficient platform motion thus confirming limitations in
performing calibration.

C. IMU + 1 Camera + Wheel Odometer
Shown in the right bottom of Fig. 4 (left bottom second

column), the time offset of base camera converges and wheel
odometer stabilizes to a stable value. The yaw of the IMU-
wheel rotation, Fig. 4 (right bottom two columns), converge
within 0.2 degrees of the manually measured value, while

the x and y translation components converge with differences
of up to 2cm. However, the convergence of the roll, pitch,
and z translation of the IMU-wheel calibration are extremely
unstable and inaccurate due to both the combination of
unobservability and information lost due to the 2D pose
projection in Eq. (27). This shows that practical calibration
of wheel odometry extrinsics is unlikely and unstable without
the addition of cross-sensor constrains which we plan to
explore in future works.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have proposed an NLS-based inertial
aided multi-sensor calibration framework (iCalib), which can
calibrate camera intrinsics refinement and spatial-temporal
parameters for IMU, camera, LiDAR, and wheel odometry.
An IMU kinematics and relative pose based interpolation
schemes are leveraged to enable time offset estimation be-
tween all sensors. We have performed extensive simulations
with 3D trajectories to validate the proposed iCalib and we
also study the degeneracy for calibration when the robot un-
dergoes 2D planar motion. We have also tested the proposed
system on a real-world UGV dataset. The calibration results
are compared to the state-of-the-art calibration toolboxes
Kalibr and MSG-CAL. We have shown that there exist
significant challenges when calibrating under constrained
motions, which limits its widespread deployment in practice
and demands more future efforts. For example, in the future
we will explore cross-sensor constraints (e.g., visual point
on LiDAR plane, and visual points on ground) to address
the stability of constrained motion calibration.
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