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Abstract— This paper studies the problem of multi-robot
cooperative visual-inertial localization where each robot is
equipped with only a single camera and IMU. We develop two
cooperative visual-inertial odometry (C-VIO) algorithms within
the multi-state constraint Kalman filter (MSCKF) framework,
in which each robot utilizes not only its own measurements but
constraints of common features co-observed with its neighbors
within the current sliding window in order to improve the
localization accuracy. The first centralized-equivalent algorithm
tracks the robot-to-robot cross correlations and prioritizes the
pose accuracy while requiring full capacity communication
among all the robots during update. The second distributed
algorithm ignores the robot-to-robot cross correlations to obtain
a scalable, robust and efficient fully distributed structure
where each robot only keeps its own states and communicates
with its neighbors, while a covariance intersection (CI)-based
update strategy is leveraged to guarantee consistency. The
proposed algorithms are validated extensively in both Monte-
Carlo simulations and real-world datasets, and shown to be
able to achieve better accuracy with competitive efficiency.

I. INTRODUCTION AND RELATED WORK

Multi-robot autonomous systems with the ability of com-
munication and perception can collaborate to accomplish
missions (e.g., area surveillance, environmental monitoring
and disastrous rescue) more efficiently and robustly than a
single robot. To successfully accomplish these tasks, robots
are required to have robust high-precision 3D localization, in
particular, when navigating GPS-denied environments. One
promising solution is the visual-inertial navigation system
(VINS), which is to fuse both the measurements from cam-
eras and inertial measurement units (IMUs) [1]. These sen-
sors are cheap and light-weight but they are complementary
and able to provide rich environmental information, hence
enabling highly-accurate motion estimation. To date, many
VINS algorithms have been developed [2]–[7], and among
them, multi-state constraint Kalman filter (MSCKF) [5] is
arguably one of the most popular ones. However, most of
current VINS are designed for the case of a single robot.

One intuitive strategy to localize a group of robots is to
let each member run a single-robot VINS algorithm indepen-
dently. However, additional geometric constraints (e.g., com-
mon feature observations, relative robot-to-robot measure-
ments) can be explored in multi-robot systems to improve the
localization performance, if robots communicate with each
other. Then, it holds great potential to design cooperative
VINS (C-VINS) algorithms for multi-robot systems. One of
the challenges for developing a C-VINS algorithm, especially
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for a large robot team, is the stringent resource limitations
associated with communication bandwidth, battery power
and computational capacity. Therefore, it is highly desirable
to design a distributed algorithm which is scalable, robust
and efficient for multi-robot systems.

Relative robot-to-robot pose or distance observations have
been utilized to perform cooperative localization (CL) for a
robot group [8]–[11]. Roumeliotis et al. [8] proposed an al-
gorithm that distributes the computation of a centralized EKF
to each robot. Though each robot propagates distributively,
all-to-all robot communication is required in the update
steps. To relax the communication requirements, Lukas et
al. [9] approximated the robot-to-robot covariances instead
of tracking the exact values. However, the filter’s consistency
can not be guaranteed. Carrillo et al. [10] introduced a
consistent algorithm based on covariance intersection (CI)
where each robot only estimates its own state and covariance
while robot-to-robot cross correlations are ignored. However,
these works address CL only in 2D where each robot’s state
only contains the planar position and heading.

Recently, relative robot-to-robot bearing observations are
used in [12], [13] to localize a group of two robots in 3D
environments. Martinelli et al. [12] provided an analytic solu-
tion to determine the relative state between two robots by es-
tablishing a Polynomial Equation System (PES). All the sin-
gularities and minimal cases that could harm the estimation
performance were analyzed in [13]. However, the results are
limited to the two-robot case using synchronized-calibrated
cameras and unbiased inertial measurements. Nguyen et al.
[14] introduced the Coupled Probabilistic Data Association
Filter (CPDAF) to estimate the robots’ poses in a common
frame using relative robot-to-robot bearing and distance
measurements. But the algorithm is centralized and is only
validated in simulation environments. In addition, [8]–[14]
all rely on relative robot-to-robot measurements which are
difficult to achieve in many realistic scenarios due to robot
sensing ability and environmental occlusion.

Alternatively, environmental common features can be used
to improve the CL performance [15]–[18]. Cooperative
SLAM (C-SLAM) algorithms enable multiple robots to build
a joint map which is used to perform CL simultaneously.
Paull et al. [15] developed a graph-based C-SLAM algorithm
for autonomous underwater vehicles (AUVs) among which
communications using acoustics is challenging. Lajoie et
al. [16] introduced a fully distributed C-SLAM algorithm
with a distributed outlier rejection for incorrect loop closures.
The robots’ estimated trajectories are retrieved through a
distributed graph optimization. However, C-SLAM may be-
come computational and memory expensive as the map size
increases, which could be prohibitive in resource-constrained
platforms. Being closest to our work, Melnyk et al. [17]
introduced the CL-MSCKF algorithm, which utilized the



common feature measurements to improve the VIO accuracy,
without building a map. The authors performed observabil-
ity analysis to determine the minimum common features
needed for computing the relative transformation between
two robots. However, the CL-MSCKF follows a centralized
formulation with only simulation results where all robots’
IMU and camera measurements are collected and processed
in a fusion center to estimate all the robots’ states.

In this paper, we propose a fully distributed multi-robot
pose estimation algorithm with a new centralized-equivalent
counterpart as the benchmark. Commonly observed features
from each robot are exploited to improve the CL accuracy.
The proposed C-VIO algorithms are based on the state-of-
the-art OpenVINS [19], possessing advanced features such
as full online calibration (including camera intrinsic, camera-
to-IMU spatiotemporal parameters) and First-Estimates Jaco-
bian (FEJ) treatments [20] to improve estimation consistency.
In particular, the main contributions of this paper include:
• We design a fully distributed cooperative (DISC)-VIO

algorithm based on CI where each robot only main-
tains and estimates its own states by communicating
with its neighbors. DISC-VIO is scalable, robust, and
computationally and communicationally efficient while
still improving the localization performance compared
to a single robot system.

• We design a centralized-equivalent cooperative (CEC)-
VIO algorithm as the benchmark, where, in contrast
to [17], only camera measurements are processed cen-
trally while each robot propagates and clones poses
distributedly. CEC-VIO achieves equivalent accuracy as
the centralized one in [17].

• Extensive Monte-Carlo simulations and real-world
datasets are used to validate the proposed C-VIO al-
gorithms in a variety of environments.

II. PROBLEM FORMULATION

We define a robot set of N robots as V . Each robot i (i ∈
V) is mounted with a monocular VI sensor that measures the
robot’s self-motion and observes environmental features. The
tracked features are divided into common features (observed
by more than one robot) and independent features (observed
by only one robot). We propose, respectively, a centralized-
equivalent and a fully distributed C-VIO algorithm to esti-
mate all robots’ states by leveraging the MSCKF [21].

A. Visual-Inertial State

For any robot i, the state vector xi consists of the current
inertial navigation state xIi , a sliding window of c historical
IMU clones xCi , and robot i’s camera intrinsic and camera-
to-IMU spatial/temporal parameters xWi

xi,k =
[
x>Ii x>Wi

x>Ci

]>
(1)

xIi =
[
Ii,k
G q̄> Gp>Ii,k

Gv>Ii,k b>ωi,k
b>ai,k

]>
(2)

xWi
=
[
CitIi

Ci

Ii
q̄> Cip>Ii ζ>i

]>
(3)

xCi =
[
Ii,k−1

G q̄> Gp>Ii,k−1
· · · Ii,k−c

G q̄> Gp>Ii,k−c

]>
(4)

where Ii,k
G q̄ is the JPL unit quaternion [22] parameterizing

the rotation Ii,k
G R from the global frame {G} to robot i’s

IMU local frame {Ii} at time step k , GpIi,k and GvIi,k are
the position and velocity of the IMU expressed in the global
frame, and bωi,k

and bai,k are the IMU’s gyroscope and
accelerometer biases, respectively. The constant calibration
parameters xWi

includes the time-offset CitIi between robot
i’s camera and IMU clocks, the spatial transformations
{Ci

Ii
q̄,CipIi} from the IMU frame to the camera frame, and

the camera intrinsics ζi containing the focal lengths, the
position of the principal point and the distortion parameters.

To perform EKF estimation, we use a minimal 3-
dimensional representation δθ to parameterize the orientation

error as q̄ '

[
δθ
2

1

]
⊗ ˆ̄q where ⊗ denotes quaternion multipli-

cation [22] and ·̂ denotes the estimated value. While for all
the other variables in the state vector, we use the standard
additive error definition (e.g., GpIi = Gp̂Ii + Gp̃Ii with ·̃
denoting the error).

B. IMU and Visual Feature Measurements
Each robot i’s IMU measures the angular velocity, Iiωm,

and the linear acceleration, Iiam as follows
Ii,kωm = Ii,kω + bωi,k

+ nωi,k
, (5)

Ii,kam = Ii,ka +
Ii,k
G RGg + bai,k + nai,k , (6)

where Iiω and Iia denote the IMU’s true angular velocity
and the true linear acceleration, nωi and nai are the corre-
sponding continue-time Gaussian white noise, and Gg is the
gravitational acceleration.

Let us consider the observation of a feature f obtained
by robot i’s camera at time step k. Note that as time-offset
inevitably exists between the IMU and camera clocks, the
time step k expressed in robot i’s camera clock, Citk, differs
from the same instant expressed in its IMU clock, Iitk. These
two time instants are related by the time-offset

Iitk = Citk + CitIi . (7)

The perspective projection measurement function for this
feature is given by

zi(
Citk) = wi

(
Π
(
Cipf (Iitk)

)
, ζi
)

+ ni(
Citk), (8)

where ni is the raw pixel noise assumed to be zero-mean
Gaussian, wi(·) is the function mapping the normalized
image coordinates onto the image plane according to the
camera model (e.g., radial-tangential or fisheye [23]) and
the corresponding intrinsics ζi.

Cipf (Iitk) = [x, y, z]> is
the feature’s position expressed in robot i’s camera frame at
timestamp Iitk, which is related to the normalized image
coordinates through the projection function Π(Cipf ) =
1
z [x, y]>. Further, we have
Cipf (Iitk) = Ci

Ii
RIi
GR(Iitk)

(
Gpf − GpIi(

Iitk)
)

+ CipIi , (9)

where Gpf is the feature’s global position which is time
invariant and unknown.

III. CENTRALIZED-EQUIVALENT ALGORITHM

In this section, we present the CEC-VIO which serves as
the benchmark for the ensuing DISC-VIO.



A. Propagation and Stochastic Cloning
When any robot i’s camera captures the k-th image with

timestamp Citk, by using robot i’s collected IMU measure-
ments (5) and (6) over the time window [Iitk−1,

Iitk] (the
corresponding time interval expressed in the IMU clock from
time step k− 1 to k), which is denoted as Ii, we propagate
the current inertial navigation state xIi at time step k− 1 to
the next time step k based on the IMU dynamics [24]:

xIi,k = f(xIi,k−1
, Ii,nIi), (10)

⇒ x̂Ii,k|k−1
= f(x̂Ii,k−1|k−1

, Ii,0), (11)

where nIi is the stacked vector of robot i’s IMU measure-
ment noises. The subscript k|k− 1 for x̂Ii,k|k−1

denotes the
predicted estimate at time step k given the measurements
up to time step k − 1. Note that the clones xCi and the
calibration parameters xWi do not evolve over time.

Based on the IMU dynamics, we can compute the state-
transition matrix Φi and the discrete noise covariance Qi

across the time interval [Iitk−1,
Iitk] [21]. The corresponding

entries for the non-evolving state xCi
and xWi

in Φi and
Qi are identity and zero, respectively. Then, robot i’s state
covariance is propagated as

Pi,k|k−1 = Φi,k−1Pi,k−1|k−1Φ
>
i,k−1 + Qi,k−1. (12)

It is important to note that once robot i has used another robot
j’s measurements of the common features to update its own
state xi, these two robots’ states are correlated afterwards.
So in general, we have Pij 6= 0 (j ∈ V , j 6= i). To achieve
a distributed propagation step, we split the cross-covariance
according to [8], [9]

Pij = σijσ
>
ji, (13)

where the factor σij maintained at robot i equals to Pij , and
the factor σji maintained at robot j is identity. Then, robot
i can propagate the cross-covariance to all the other robots
by updating the factors

σij,k = Φi,k−1σij,k−1. (14)

After propagating to time step k, the state vector is
augmented with an estimate of the IMU pose at the true time
Iitk, which will be a clone state in xCi . This augmented state
can be written as a function g(xi) of the current state vector
[25]. We can compute the state Jacobian Ji from g(xi) and
then augment robot i’s current covariance by [26]

Pi,k ←

[
Pi,k Pi,kJ

>
i,k

Ji,kPi,k Ji,kPi,kJ
>
i,k

]
. (15)

Note that we also need to augment the cross-covariance

factors σij by σij,k ←

[
σij,k

Ji,kσij,k

]
. Later, the cross cor-

relations that are needed for updating the estimate will be
reproduced using these factors when an update is triggered.

B. Update
To check if there exist common features, the extracted fea-

tures’ measurements with their descriptors from each robot’s
k-th image are collected at a centering robot, where runs a
centralized update. For an independent feature, if it is lost or
reaches the maximum track length (the sliding window size),

we perform MSCKF update. While to optimally utilize the
common feature measurements, MSCKF update is triggered
when a common feature is lost in all the associated robots, or
reaches the maximum track length of any associated robot,
or contains the oldest clone in any associated robot’s state.

Note that all the robots’ states will be updated either using
common features or independent features, as the robots’
states are correlated. When the update is triggered for a fea-
ture, all the robots’ states, covariances and cross-covariance
factors together with this feature’s measurements are col-
lected at the centering robot. The current cross correlations
are reproduced by

Pij,k|k−1 = σij,kσ
>
ji,k, Pji,k|k−1 = P>ij,k|k−1, (16)

where i, j ∈ V and j 6= i. Then, by using all the mea-
surements and the corresponding clones, we triangulate the
feature’s global position Gpf and compute the stacked vector
of measurement residuals, r, associated with this feature
based on the measurement model (8), (9). The linearized
residual system can be written as

r = Hxx̃k|k−1 + Hf
Gp̃f + n, (17)

where x̃ = [x̃1, · · · , x̃N ], Hx and Hf denote the corre-
sponding stacked Jacobians with respect to the state and the
feature, and n is the stacked noise vector. To avoid storing
the feature’s position in our state, we project system (17)
onto the nullspace of feature Jacobian Hf . With matrix N
whose columns form a basis of this nullspace, we can have:

N>r = N>Hxx̃k|k−1 + N>Hf
Gp̃f + N>n, (18)

⇒ r′k = H′xx̃k|k−1 + n′. (19)

Equation (19) can be directly used to perform the EKF
update. After that, the new cross correlation Pij,k|k are
decomposed using (13) again. The resulting factors together
with the states and covariances will be sent back to the
corresponding robots.

IV. FULLY DISTRIBUTED ALGORITHM

In this section, we present the DISC-VIO in which the
robot-to-robot cross-correlations are conservatively dropped
off via covariance intersection.

A. Propagation and Stochastic Cloning
When any robot i receives the k-th image with timestamp

Citk, robot i’s IMU measurements of the angular velocity,
Iiωm, and the linear acceleration, Iiam, over the time
interval [Iitk−1,

Iitk] are utilized to propagate the state and
the covariances from time step k − 1 to k based on (11)
and (12). After that, an estimate of the current IMU pose
is appended to the state vector as a clone state and the
covariance is augmented as (15). Each robot performs these
two steps individually.

B. Update
When any robot i’s camera captures the k-th image, it

receives the extracted features’ descriptors of the latest im-
ages from its communication neighbors. Feature matching is
performed in pair between robot i’s k-th image features and
the received ones to check if there exist common features.
Then, the features tracked at robot i can be classified as



an independent feature or a common feature. If a feature
is a common feature, robot i will store its neighbors’
measurements.

When a feature is lost or reaches its maximum track length
at robot i, we trigger the update. If it is an independent
feature, the standard single-robot MSCKF update [21] is
performed. Note that if this feature is a common feature at
robot i, it could have been tracked across multiple frames
in more than two robots. Let Nf be a robot set in which
this feature is tracked. So i ∈ Nf . Further, we denote
{j1, · · · , jL} as a subset of Nf that excludes robot i.
Additionally, we let n(·) be the corresponding stacked noise
vector for a stacked residual system. To process this common
feature, robot i receives the associated clones, states and the
corresponding covariances from robot jl (l = 1, · · · , L). By
using all available measurements from the robots in Nf ,
we triangulate the feature’s global position. After that, we
use robot i’s measurements to compute a stacked linearized
residual system

ri = Hi,xx̃i,k + Hi,f
Gp̃f + ni. (20)

We perform Givens rotations [27] to zero-out rows in Hi,f

with indices larger than 3, and apply the same Givens
rotations to Hi,x and ri,k. Then, system (20) is split into a
subsystem that depends on the feature’s position and another
subsystem that does not.[

ri1
ri2

]
=

[
Hi1,x

Hi2,x

]
x̃i,k +

[
Hi1,f

0

]
Gp̃f +

[
ni1
ni2

]
. (21)

Similarly, we can use robot jl’s measurements to compute a
stacked linearized residual system

rjl,k = Hjl,xx̃jl,k + Hjl,f
Gp̃f + njl , (22)

which is separated into the following two subsystems by
performing Givens rotations on Hjl,f , rjl,k and Hjl,x.[

rjl1
rjl2

]
=

[
Hjl1,x

Hjl2,x

]
x̃jl,k +

[
Hjl1,f

0

]
Gp̃f +

[
njl1
njl2

]
, (23)

Note that the bottom reduced system in (21) is only
associated with robot i’s state, which can be directly used to
update robot i’s estimate by using the EKF. Stacking the top
systems in (21) and (23) for all jl (l = 1, · · · , L), we obtain
a new system that dependents on the feature’s position.

ri1
rj11

...
rjL1

 = Diag{


Hi1,x

Hj11,x

...
HjL1,x

}


x̃i,k
x̃j1,k

...
x̃jL,k

+


Hi1,f

Hj11,f

...
HjL1,f

Gp̃f +


ni1
nj11

...
njL1



⇒ ri = [H̄i,x H̄j1,x · · · H̄jL,x]


x̃i,k
x̃j1,k

...
x̃jL,k

+ H̄f
Gp̃f + n̄i, (24)

where Diag{·} denotes the block-diagonal matrix con-
structed from the elements. Then, we project system (24)

onto the nullspace of H̄f and obtain a system that is
independent of Gp̃f .

r′i =
[
H̄′i,x H̄′j1,x · · · H̄′jL,x

]


x̃i,k
x̃j1,k

...
x̃jL,k

+ n̄′i, (25)

which contains additional constrains of the common feature.
Here, the noise vector n̄′i is assumed to be zero-mean
Gaussian with covariance Ri. It is important to note that
performing the standard EKF update using (25) will yield
an inconsistent estimate which degrades the performance
seriously, since x̃i and x̃jl (l = 1, · · · , L) are in general
correlated with unknown correlations. To guarantee consis-
tency, we adopt the CI algorithm [28]:

1
ωi

Pi

. . .
1
ωjL

PjL

 >


Pi · · · PijL
...

. . .
...

P>ijL · · · PijL

 , (26)

where the left side is the CI covariance with zero off-
diagonal elements and the right hand side is the unknown

true covariance of the state
[
x̃i, x̃j1 , · · · , x̃jL

]>
. The weights

ωi > 0, ωjl > 0 and ωi +
∑
l ωjl = 1, for l = 1, · · · , L.

Substitute (26) into the EKF using system (25), we obtain
the following equations to update robot i’ estimate.

δxi,k =
1

ωi
Pi,k|k−1H̄

′>
i,xS

−1
k r′ij , (27)

Pi,k|k =
1

ωi
Pi,k|k−1 −

1

ω2
i

Pi,k|k−1H̄
′>
i,xS

−1
k H̄′iPi,k|k−1, (28)

Sk =
∑
o∈Nf

1

ωo
H̄′o,xPo,k|k−1H̄

′>
o,x + Ri, (29)

where δxi is the correction to the state estimate x̂i.

V. EXPERIMENTAL RESULTS

We compared our algorithms to the case where each robot
performs independent MSCKF using a single camera and
IMU. We represent this case as OpenVINS for simplicity.
Compared with the proposed CEC-VIO and DISC-VIO, the
only difference of settings in OpenVINS is that no common
features are detected and used. Note that we do not include
any SLAM features [29], the features that can be tracked
beyond the clone window, in the state vector. To fully test the
proposed algorithms, we first performed extensive Monte-
Carlo simulations on the synthetic data generated from
realistic trajectories in three different scenarios. Following
that, a real-world test was performed.

The weights in CI (26) are usually chosen by minimizing
the uncertainty of the posterior covariance [10], [28]. In
DISC-VIO, one can gain these weights by minimizing the
trace of Pi,k|k in (28) at every update step. This optimization
problem is non-convex and could be time consuming as the
size of Nf increases. Through extensive simulations and the
real-world test, we find that fixed weights in DISC-VIO work
well and these weights are easy to choose. To speed up
the process of DISC-VIO and demonstrates its applicability
in resource-constrained platforms, we test DISC-VIO with



TABLE I: Simulation parameters. Note that all algorithms
and robots use the same parameters as reported in this table.

Parameter Value Parameter Value

Cam Freq(hz) 10 IMU Freq(hz) 200
Max Clones 12 Num Feats Per Frame 120

Gyro White Noise 1.6968e-4 Gyro Rand Walk 1.9393e-5
Accel White Noise 2.0000e-3 Accel Rand Walk 3.0000e-3

Pixel Noise 1 FEJ True

fixed weights. In both simulations and the real-world tests,
for any robot i running DISC-VIO, we let ωjl = 0.008
(l = 1, · · · , L) and then ωi = 1 −

∑
l ωjl . For example,

when updating robot 0’s estimate using a common features
that is also tracked by robot 1 and robot 2, we have ω1 =
ω2 = 0.008 and ω0 = 0.984.

A. Monte-Carlo Simulations
We simulated a team of three robots in different environ-

ments depicted in Fig. 1. In each group, one robot follows
a realistic trajectory which is used to create the trajectories
of the other two robots by adding orientation and position
offsets. The IMU and camera measurements are generated
from these simulated trajectories. The first simulated dataset,
termed as ”EuRoC MH5”, is based on the 97 meters ”Ma-
chine Hall 05” dataset from EuRoC MAV datasets [30]. The
second simulated dataset is called ”Udel gore” based on
a 240 meters dataset which traverses three floors in the
University of Delaware’s Gore Hall [19]. The third dataset
is called ”Tum corridor” which is highly dynamic and based
on the 295 meters ”Tum Corridor 1” dataset from the TUM
VI datasets [31]. To ensure a fair comparison, the same
parameters summarized in Table I were used in all algorithms
for three robots.

We performed 50 Monte-Carlo runs on each simulated
dataset. The Root Mean Square Error (RMSE) and Normal-
ized Estimation Error Squared (NEES) results averaged over
all runs for robot 0 (R0) are given in Fig. 1. Results for
robots 1 (R1) and 2 (R2) are similar and omitted here. Table
II provides the RMSE results averaged over all runs and
time steps for three robots. Fig. 1 and Table II show that the
proposed CEC-VIO and DISC-VIO outperform OpenVINS
in all three simulated scenarios. Especially for CEC-VIO,
the errors can be reduced by more than half. As shown on
the right in Fig. 1, DISC-VIO has the smallest NEES as
expected, since CI makes the estimate more conservative.

B. Real-World Tests
We further evaluated the proposed CEC-VIO and DISC-

VIO in the room scenarios from the TUM VI datasets [31]
which provide 20 Hz stereo image (only the left image
is leveraged in the test), 200 Hz IMU measurements and
the accurate pose ground truths from a motion capture
system for entire trajectories. We simultaneously read three
bags collected in the same room to mimic a three-robot
cooperative case. Three robots’ trajectories shown in Fig.
2 are 146, 135 and 131 meters long, respectively.

We initialized three robots’ inertial navigation states with
the corresponding pose ground truths, zero velocities and
zero gyroscope and accelerometer biases. All extrinsics and

TABLE II: The average RMSE in degree/meters for three
simulated datasets using different algorithms.

EuRoC Gore Tum Average

R0 OpenVINS 0.68 / 0.22 0.45 / 0.23 0.48 / 0.24 0.54 / 0.23
R0 DISC-VIO 0.35 / 0.11 0.32 / 0.18 0.26 / 0.16 0.31 / 0.15
R0 CEC-VIO 0.22 / 0.06 0.24 / 0.12 0.22 / 0.09 0.22 / 0.09

R1 OpenVINS 0.62 / 0.21 0.46 / 0.21 0.50 / 0.25 0.53 / 0.22
R1 DISC-VIO 0.33 / 0.11 0.31 / 0.18 0.26 / 0.16 0.30 / 0.15
R1 CEC-VIO 0.22 / 0.06 0.24 / 0.12 0.22/ 0.10 0.22 / 0.09

R2 OpenVINS 0.59 / 0.17 0.50 / 0.23 0.49 / 0.23 0.53 / 0.21
R2 DISC-VIO 0.32 / 0.11 0.32 / 0.18 0.26 / 0.16 0.30 / 0.15
R2 CEC-VIO 0.22 / 0.06 0.23 / 0.12 0.22 / 0.09 0.22 / 0.09

TABLE III: The average RMSE resutls in degree/meters for
three robots using different algorithms.

OpenVINS DISC-VIO CEC-VIO

Robot 0 2.978 / 0.132 1.430 / 0.059 1.145 / 0.056

Robot 1 2.220 / 0.112 1.375 / 0.070 0.904 / 0.059

Robot 2 2.224 / 0.130 1.244 / 0.077 1.126 / 0.059

intrinsics were initialized with the values provided in the
datasets and each robot’s camera-to-IMU time offsets were
set to zeros. Features were uniformly extracted using FAST
[32] and tracked for each robot’s image stream or matched
across different robots’ images using ORB [33] with 8-
point RANSAC to reject outliers. Up to 150 features were
extracted and tracked over a sliding window with size 11.
For a fair comparison, filters on each robot were initialized
with the same values, and the same settings above were used
for all the robots and algorithms.

It is worth noting that throughout the entire trajectories,
common features only occasionally appear. Table III shows
the average RMSE results of three robots and Fig. 3 shows
the Relative Pose Error (RPE) results computed over three
robots’ trajectories. It is clear that in term of both RMSE
and RPE, DISC-VIO and CEC-VIO improve the accuracy
for all three robots with limited common features, and CEC-
VIO achieves the best performance as expected. Additionally,
we timed the complete execution time of all three robots at
each frame that mainly includes the timing for propagation,
tracking, matching across robots for C-VIO, update and
marginalization. As shown in Fig. 4, probably due to the
fixed weights used in CI, DISC-VIO only takes a bit more
time than OpenVINS.

VI. CONCLUSIONS AND FUTURE WORK
In this paper, we have developed two cooperative VIO (C-

VIO) algorithms for multi-robot cooperative localization. (i)
The first one is CEC-VIO that has centralized performance
but distributed state propagation and clone, which sets up the
benchmark performance; (ii) The second one is DISC-VIO
which leverages CI to design a fully distributed C-VIO algo-
rithm. DISC-VIO is shown to be more scalable and efficient
and robust due to its fully distributed architecture. Common
features tracked over the sliding-window are exploited to
improve the localization accuracy for both algorithms. The



Fig. 1: Three robots’ true trajectories (squares denote the starts and circles denote the ends) and robot 0’s average RMSE
and NEES results in the simulated EuRoC MH (upper), Udel gore (middle) and Tum corridor datasets (bottom).

Fig. 2: Three robots’ true trajectories. Squares denote the
starts and circles denote the ends.

effectiveness of our approaches have been validated through
extensive Monte-Carlo simulations and real-world datasets.
In the future, we will further improve our algorithms by
including SLAM features in the state vector as well as using
robot-to-robot measurements (if available), and deploy the
the proposed algorithms on real multi-MAV systems.

Fig. 3: The RPE results for different segment lengths com-
puted over three robots’ trajectories. Red corresponds to
CEC-VIO, blue corresponds to DISC-VIO and black cor-
responds to OpenVINS.

Fig. 4: The timing results for different algorithms.
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