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Abstract

In this paper, we present a real‐time high‐precision visual localization system for an

autonomous vehicle which employs only low‐cost stereo cameras to localize the

vehicle with a priori map built using a more expensive 3D LiDAR sensor. To this end,

we construct two different visual maps: a sparse feature visual map for visual

odometry (VO) based motion tracking, and a semidense visual map for registration

with the prior LiDAR map. To register two point clouds sourced from different

modalities (i.e., cameras and LiDAR), we leverage probabilistic weighted normal

distributions transformation (ProW‐NDT), by particularly taking into account the

uncertainty of source point clouds. The registration results are then fused via pose

graph optimization to correct the VO drift. Moreover, surfels extracted from the prior

LiDAR map are used to refine the sparse 3D visual features that will further improve

VO‐based motion estimation. The proposed system has been tested extensively in

both simulated and real‐world experiments, showing that robust, high‐precision,
real‐time localization can be achieved.
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1 | INTRODUCTION

It is essential for autonomous vehicles to be able to perform low‐
latency, high‐precision, and robust localization, which has attracted

significant research efforts over the past decades. Different sensors

providing either global or local measurements have been employed for

this purpose. For example, as a common practice, the global positioning

system (GPS) or real‐time kinematic (RTK)‐GPS is widely used outdoor

for global position estimates. However, in many GPS‐denied environ-

ments, such as near tall buildings, indoor, and underground, such global

positioning measurements are not reliable or unavailable, and sensors

of local measurements such as cameras and LiDARs have to be

resorted (Cvišić, Ćesić, Marković, & Petrović, 2018; Mur‐Artal &

Tardós, 2017a,b; Qin & Shen, 2017; J. Zhang & Singh, 2014, 2015).

Vision‐based and LiDAR‐based localization approaches are among

the two most popular solutions in GPS‐denied environments. In

particular, monocular camera based visual odometry (VO) is

cost‐effective but only provides up‐to‐scale ego‐motion estimates.

Although stereo VO is able to recover motion scale with considerable

accuracy, it is still an open‐loop odometry system with localization

errors growing over time. To reduce VO drift and bound navigation

error, a prior visual feature‐based map is typically leveraged during

online localization, by matching the descriptors of visual features

detected in the current images to those in the map (Kim, Lee, Oh, Choi,

& Myung, 2015; Mur‐Artal & Tardós, 2017b; W. Zhang & Kosecka,

2006). Once feature correspondences are established, the 6DOF pose

(relative transformation from the current camera frame to the map

frame) can be efficiently computed by using, for example, iterative

closest point (ICP; Besl & McKay, 1992) or perspective‐n‐point (PnP;
Lepetit, Moreno‐Noguer, & Fua, 2009) algorithms. It is known that

descriptor‐based visual features are highly related to scene appear-

ance and can be easily affected by lighting conditions, especially

outdoor. Thus, substantial research efforts have focused on building

visual feature‐based maps for long‐term operation by detecting

distinct features from multiple runs to capture visual variances, which

clearly requires significant efforts to collect and manage data
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(Churchill & Newman, 2013; Mühlfellner et al., 2016). On the other

hand, LiDAR‐based localization solutions (J. Zhang & Singh, 2014,

2016) can achieve higher accuracy even with illumination variation,

while the high cost of 3D LiDAR sensors greatly hinders their

widespread adoptions. Nevertheless, in some application field, such as

autonomous driving, it is well worth building an environmental map by

LiDAR sensors, primarily because an ideal map should be as accurate

as possible and as stable as possible (with minimum updates at later

times) regardless of the dynamic changes into the environment so that

it can be reused at later times and/or by other vehicles. With this in

mind, a priori LiDAR map may be maintained and updated only when

nonnegligible environmental changes occur (e.g., new constructions,

route changes). Once it is built, regardless of lighting variation, the rich

structural information captured by the LiDAR map can be used to

enhance online visual localization. Furthermore, a prior visual map may

carry little information for online visual localization when there is a

large path deviation between the route of online visual localization and

that of the prior mapping, in part because of the camera's smaller field

of view (often less than 180°) as compared to the full 360° coverage of

the LiDAR sensor (e.g., Velodyne LiDARs; Velodyne VLP‐16, 2018).
In this study, we propose to perform keyframe‐based stereo vision‐

based localization with a prior LiDAR map to provide bounded‐error
6DOF pose estimates in real‐time. To this end, we particularly build and

maintain two different visual maps aiming to utilize the information

available in images effectively: (a) The first is the sparse visual feature‐
based map that includes visual features and encodes the covisibility

relationship between keyframes as in Mur‐Artal, Montiel, and Tardos

(2015); (b) The second is the semidense visual map that consists of point

clouds reconstructed from local keyframes and is used for registration

with the prior LiDAR map (PLM). As the sparse visual feature map is

unable to capture sufficient structural information of the environment

and it is difficult to obtain accurate registration by matching the visual

feature map to the prior LiDAR map, we primarily leverage the visual

point cloud for this purpose, while the prior LiDAR map is also used to

refine the visual feature map and thus improve the VO. It should be

noted that, due to the different sensing modality used in mapping

(LiDAR) and localization (camera), the point clouds generated from the

stereo camera and LiDAR are of significant discrepancy (see Figure 1),

posing significant challenges on registration of these two types of point

clouds. For example, the LiDAR point clouds cover wider areas with

relatively accurate metric information but low elevation resolution,

while the dense visual point clouds from stereo images offers a better

interpretation of surroundings but with poor depth measurement. To

take up the challenge arising in this multimodal point‐cloud registration,

we advocate the probabilistic weighted normal distributions transfor-

mation (ProW‐NDT) by explicitly modeling and considering the

uncertainty of every single point in the semidense visual map. Due to

the efficiency of this registration, the proposed approach is lightweight

and can run real‐time on a multicore CPU, while the state‐of‐the‐art
approaches on visual localization with LiDAR maps (Neubert, Schubert,

& Protzel, 2017; Maddern, Stewart, & Newman, 2014; Pascoe,

Maddern, & Newman, 2015; Pascoe, Maddern, Stewart, & Newman,

2015; Stewart & Newman, 2012; Wolcott & Eustice, 2014; Wong,

Kawanishi, Deguchi, Ide, & Murase, 2017) that often rely on the support

of powerful GPU to render synthetic images from LiDAR maps.

Specifically, the main contributions of this paper are the following:

• We develop a low‐cost, real‐time visual localization system by utilizing

a prior LiDAR map. As compared to expensive LiDAR‐based
localization, this is a low‐cost solution. The proposed method is able

F IGURE 1 We propose a stereo visual localization system aided by a prior LiDAR map. In this system, both the sparse feature visual map and

semidense visual map are constructed in order for robust fusion with the prior LiDAR map to provide low‐cost, high‐precision localization
solutions [Color figure can be viewed at wileyonlinelibrary.com]
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to provide full 6DOF poses of the stereo camera with centimeter‐level
accuracy, and suitable for real‐time application (with no need of GPU).

• We leverage the ProW‐NDT to effectively register the semidense

visual map to the prior LiDAR map, by considering the uncertainty of

point clouds in the visual map. We also develop a novel nonrigid

refinement method for the 3D sparse visual features. The refinement is

based on surfels extracted from the PLM and shows to improve VO.

• The proposed method is extensively validated on the simulated data

set, the publicly available KITTI (Geiger, Lenz, & Urtasun, 2012) and

KAIST urban data sets (Jeong, Cho, Shin, Roh, & Kim, 2019), as well as

our own data. The results demonstrate that our algorithm is able to

improve visual‐only localization. Additionally, three different map

reuse systems: the proposed visual localization over LiDAR map,

visual localization over visual map, LiDAR localization over LiDAR

map, are compared to further validate the proposed system.

The rest of the paper is organized as follows: After reviewing

related literature in the next section, we describe the overview of the

proposed visual localization system in Section 3. In Sections 4.1

and 4.2, we present in detail the local semidense visual map

reconstructed from keyframes and its registration to the prior LiDAR

map via the ProW‐NDT. In Section 4.3, we enforce structure

constraints to refine the sparse visual features with the prior LiDAR

map. The pose graph optimization is presented in Section 4.4. In

Section 5, we perform extensive validations of the proposed approach

on both simulations and experiments. Finally, we conclude the paper

with possible future research directions in Section 6.

2 | RELATED WORK

There is a rich body of literature on robot localization and mapping

(e.g., Cvišić et al., 2018; Mur‐Artal & Tardós, 2017a,b; Qin & Shen,

2017; J. Zhang & Singh, 2014, 2015), while in this section we only

review the work that is closely related to the proposed visual

localization with LiDAR maps.

2.1 | Visual localization and SLAM

Map‐based visual localization using cameras is an active research topic

in recent years (Piasco, Sidibé, Demonceaux, & Gouet‐Brunet, 2018;
Sujiwo et al., 2017). Various measurement information can be exploited

in vision‐based localization such as semantic clues and geometric

features, which essentially determines the specifications of vision‐based
localization systems (Piasco et al., 2018). A combination of different

types of information is often leveraged to overcome the limits of image‐
only based methods. Moreover, different robust visual features such as

SIFT (Ng & Henikoff, 2003) and BRIEF (Calonder, Lepetit, Strecha, &

Fua, 2010), which describe the key points detected in images to make

them distinguishable from each other, are often used for visual

localization, by matching features extracted from live image streams

to the features in prior 3D feature database (Kim et al., 2014, 2015; Lu,

Ly, Shen, Kolagunda, & Kambhamettu, 2013; W. Zhang & Kosecka,

2006). For example, W. Zhang and Kosecka (2006) prototype an image‐
based localization system in urban environments using SIFT features to

select the closest views in the database. Cummins and Newman (2008)

propose FAB‐Map, a probabilistic localization method in the space of

appearance, which aims to address the problem of visual aliasing for

large‐scale navigation. Kim et al. (2015) consider the uncertainty of

features when performing 3D‐to‐2D correspondence to estimate 6DOF

pose. Specifically, after performing PnP (Lepetit et al., 2009) with these

correspondences, a batch least‐squares optimization problem is

formulated to further improve the localization accuracy.

Visual feature‐based SLAM jointly estimates the camera pose and

features in the scene by minimizing the reprojection errors and has

attracted significant attention (Klein & Murray, 2007; Mur‐Artal &

Tardós, 2017a; Mur‐Artal et al., 2015). In particular, performing loop

closures in SLAM is essential, which can be achieved by relying on

matching currently observed features with those in the map (Klein &

Murray, 2007; Mur‐Artal & Tardós, 2014; Williams et al., 2009).

However, such feature‐based methods highly rely on the availability of

visual features and the accuracy of the prior feature map, both of which

are often not reliable in outdoor environments. Hence, research efforts

have focused on building feature maps for long‐term navigation

(Churchill & Newman, 2013; McManus, Churchill, Maddern, Stewart,

& Newman, 2014; Mühlfellner et al., 2016; Sujiwo et al., 2017). For

example, McManus et al. (2014) propose a method that runs two

localization threads in parallel: one using images in the RGB color space

and the other using images in an illumination‐invariant color space. This
method is able to reduce visual localization failure rates when dealing

with severe lighting changes. Churchill and Newman (2013) incremen-

tally learn a model of the environment, whose complexity varies

naturally due to the variations of scene appearance but which is of

sufficient richness of the instances to allow for reliable localization

despite various operation conditions. Mühlfellner et al. (2016) build a

summary map of visual features for long‐term localization, which is

constructed by accumulating distinct features when a robot repeatedly

traverses its workspace, and implicitly represents the scene variations of

changing lighting conditions and different weathers. Sujiwo et al. (2017)

build several visual feature maps over multiple runs based on LiDAR‐
based localization, which are reused during online visual localization,

shown to be robust to changing environments.

2.2 | LiDAR map‐based visual localization

Cameras can capture the appearance of the environment, while

LiDAR is able to perceive metric structural information. To take

advantage of both sensors, research efforts have been devoted to

leveraging the LiDAR maps for visual localization. For example, in

Maddern et al. (2014), Neubert et al. (2017), Pascoe, Maddern, and

Newman (2015), Pascoe, Maddern, Stewart, and Newman (2015),

Stewart and Newman (2012), Wolcott and Eustice (2014), and

Wong et al. (2017), visual localization with synthetic images

rendered from prior LiDAR maps, is performed. In particular, in
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Wolcott and Eustice (2014), a prior LiDAR map augmented with

surface reflectivities is used to render several synthetic views

from different poses. The live images captured by the camera are

matched with these synthetic images based on the normalized

mutual information, which, however, can only use a monocular

camera for 2D localization. In Maddern et al. (2014), both the prior

LiDAR point clouds and live images are attached with illumination‐
invariant appearance, and registration between the two are

conducted in the corresponding illumination‐invariant space.

During the registration, the normalized information distance

(NID) is used to measure the discrepancy of the appearance. In

Pascoe, Maddern, and Newman (2015) and Pascoe, Maddern,

Stewart, and Newman (2015) better localization is achieved by

minimizing the NID between a live image and an image generated

from the prior colored 3D map. Recently, Wong et al. (2017)

propose a method that uses a monocular camera to localize a

vehicle, which uses the edge regions shared between rendered

views from a voxel occupancy map and live images to determine

the camera pose. Neubert et al. (2017) develop a Monte‐Carlo
based approach to localize a panoramic camera by minimizing

mutual projections of the gradients, extracted from synthesized

depth images and live visual images. However, since it is

computationally expensive to obtain the synthetic images by

rendering the prior map from different camera poses, all these

methods are computationally intensive and need the GPU support.

It should be noted that the very recent work (Kim, Jeong, & Kim,

2018) estimates 6DOF camera poses based on the minimization of

depth residual, which is able to run on CPUs but unable to achieve

real‐time performance. Note also that Lu, Huang, Chen, and

Heisele (2017) propose a monocular localization system in urban

environment, where the road markings in the LiDAR map,

including solid lines and broken lines, are manually extracted and

represented as a set of sparse points and the Chamfer matching

(Barrow, Tenenbaum, Bolles, & Wolf, 1977) is used to register the

detected road markings in an image against those in the prior map.

As an extension of this study, the planar structure extracted from

both visual and prior LiDAR data is used as the anchoring

information to fuse the heterogeneous maps (Lu, Lee, et al.,

2017). This approach exploits the coplanarity constraints in its

bundle adjustment (BA), while our proposed method uses the

whole LiDAR point clouds (not only the planar structure).

There are also research efforts focusing on matching the point

clouds generated from cameras with those from LiDAR sensor to obtain

the transformation best aligning the two point clouds. In particular, in

Caselitz, Steder, Ruhnke, and Burgard (2016), the algorithm of

continuous registration of a set of sparse 3D visual features to the

prior LiDAR map for 6DOF camera poses, is proposed, which is tested

on one modified sequence of KITTI data sets (Geiger et al., 2012) and

their own data set. A structure‐based vision‐LiDARmatching framework

is introduced in Gawel et al. (2016), where three types of structural

descriptors are designed to find point correspondences and evaluated

on several different data sets. In Agamennoni, Fontana, Siegwart, and

Sorrenti (2016), the probabilistic data association is proposed to

improve the registration between the sparse and dense point clouds.

Different from the standard ICP, each point in the source point cloud is

associated with a set of points in the target point cloud, and each

association is weighted according to a probabilistic distribution.

Acceptable performance can be obtained when the algorithm con-

verges. In contrast, the proposed system uses two types of visual map

and both visual maps are fused with the prior LiDAR map, thus

improving the accuracy and robustness.

3 | SYSTEM DESIGN

In this section, we present the overall architecture of the proposed

real‐time visual localization system, which includes three main

parallel threads: visual tracking, local mapping, and prior LiDAR

map‐based visual localization, as shown in Figure 2. The main steps of

the proposed approach are outlined in Algorithm 1.

F IGURE 2 The proposed visual localization system with the PLM. The three main threads are visual tracking, local mapping, and PLM‐based
visual localization. Two types of visual maps are maintained: sparse feature visual map used for visual tracking and semidense visual map for
registration. PLM, prior LiDAR map [Color figure can be viewed at wileyonlinelibrary.com]
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3.1 | Visual tracking

As in the state‐of‐the‐art feature‐based VO algorithms (Cvišić et al., 2018;

Mur‐Artal & Tardós, 2017a; Qin & Shen, 2017), once live images are

available from the stereo camera, we extract sparse features and

describe them with distinct descriptors. Features are tracked in the latest

frame or the local visual feature map for real‐time motion estimation.

With a set of 3D to 2D correspondences, the camera pose is computed

based on PnP (Lepetit et al., 2009) with RANSAC‐based outlier rejection.

3.2 | Local mapping

In this thread, we build a local sparse feature‐based visual map that

consists of the distinct sparse visual features, which is used by visual

tracking. If the stereo match of a feature is found, the feature will

be initialized immediately; if not, it will be triangulated later using

subsequent images. When a new keyframe is determined, it will be

inserted into both the local mapping thread and the PLM‐based visual

localization thread. The visual features within this new keyframe are

initialized and associated with other features that already exist in the

feature map. A covisibility graph encoding the data associations of sparse

features is also maintained in the feature map. From the PLM‐based
visual localization thread, we will have the 6DOF pose estimates of some

selected keyframes by registration. Pose graph optimization will adjust

the poses of local keyframes by fusing the VO and registration results.

Note that we refer to the pipeline without using the PLM as VO, which

includes the visual tracking thread and local mapping thread without

structure constraints. Since the PLM is typically more accurate in metric

space, we refine the local visual feature map by a local portion of the

LiDAR map to enforce local planar structure constraints.

3.3 | Prior LiDAR map‐based visual localization

There are two main tasks in the PLM‐based visual localization thread:

(a) semidense visual map reconstruction and (b) registration with the

PLM. For real‐time capacity, we propose to perform a fast semidense
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map reconstruction from keyframes only. The keyframes, inserted

into the PLM‐based visual localization thread, are kept in a keyframe

buffer (see Figure 3), which only stores a fixed number of latest

keyframes, while the oldest keyframe is dropped. The recovered map

from one single keyframe usually contains only few structures,

whereas a map with enough structures is required to benefit the

registration. Therefore, we collect several keyframes into a sliding

window, and after recovering the point cloud of each keyframe, we

aggregate the point clouds from these keyframes to form an

integrated local map as a semidense visual map. Among all the

keyframes in the sliding window, a reference keyframe is determined;

we select the second latest as the reference keyframe in our

implementation. During the aggregation, point cloud from every

single keyframe will be transformed into this reference keyframe by

relative‐pose estimations from VO. And the 6DOF pose of

the reference keyframe with respect to PLM will be obtained from

registration and set as the prior in the pose graph. There are several

reasons for selecting the second latest keyframe as the reference

keyframe. First, the pose estimation of the newest keyframe is not

optimized, which is not able to give a good initial guess to the

registration if it is selected as the reference. Second, although the

oldest keyframe has been optimized several times and has an

accurate pose estimation, it is the farthest from the current frame.

The pose correction to the oldest keyframe after registration is not

able to correct the pose of the latest frame in time. If the drift of the

current frame is not corrected in time, the subsequent registrations

may be not able to converge to good values.

The number of keyframes n, in the sliding window, will fluctuate

in a small range (such as in our experiments, n∈ {6, 10} as we will

show later), according to the number of covisible sparse features

among consecutive keyframes. The key insights behind this can be

described as follows. We try to include as many keyframes into the

local semidense visual map, which is able to capture sufficient

structures of the scene and usually benefit the registration. More-

over, a small number of covisible sparse features from consecutive

keyframes usually lead to poor relative‐pose estimation. This often

occurs when sudden changes happen to the robot's orientation or

illumination conditions of the environment. In such cases, we will

reduce the size of the sliding window to suppress the errors of the

local semidense visual map, which are raised from the poor relative‐
pose estimates. If the number of covisible features between any two

consecutive keyframes in the sliding window is smaller than a given

threshold, we will set a smaller size to the “sliding window.” After the

reconstruction, a local semidense visual map in the reference

keyframe will be matched with the PLM. Sometimes, this thread

cannot process all the keyframes in time, because of the fast

keyframe insertion or the time‐consuming registration. Some key-

frames will be ignored, and will not be reconstructed. If the number

of new‐coming keyframes inserted into the keyframe buffer, during

the reconstruction and registration, exceeds the “sliding window”

size limit, the exceeding keyframes will be truncated and will not be

used for the local semidense visual map reconstruction. Although

the exceeding keyframes are ignored in this thread, the keyframes in

the sliding window for reconstruction and registration are always

consecutive in time, thus leading to a consistent and even local

reconstruction. Furthermore, in this thread, the semidense visual

map is reconstructed with uncertainty under Gaussian distribution,

which will be taken into consideration in the registration.

In the registration, the semidense visual map is treated as source

point cloud, while the PLM as target point cloud. Both PLM and

semidense visual map will be preprocessed before registration:

semidense visual map should be downsampled for fast registration

and filtered for noises repression, while prior LiDAR map will be

divided into multiple cells in preparation for registration. During

the down‐sample of the semidense visual map, all points inside a cube

will be replaced by the mean of those points. In our experiments, the

length of the cube is set as 0.25m.

Although not all keyframes will be assigned with prior poses

from the registration, it is enough to suppress the drift of online

VO. Since the proposed approach is not designed for global

localization, a rough initial guess of the camera pose in the prior

LiDAR map, when starting the system, should be provided (e.g., by

GPS). If a successful registration is performed, we can get the

camera pose with respect to prior LiDAR map, and thus be able to

F IGURE 3 Illustration of keyframe buffer used to store the inserted keyframes. The keyframes in the sliding window are used for local
semidense reconstruction. A specific number (6, in this figure) of new keyframes in the sliding window are used for reconstruction; during this

reconstruction and registration, another two new keyframes are inserted to the buffer, shown in the middle figure; in the bottom, the window
slides to the front of the keyframe buffer after finishing registration [Color figure can be viewed at wileyonlinelibrary.com]
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know the rigid transformation between the frame of VO and the

frame of prior LiDAR map. For simplicity, we transform the VO into

the frame of LiDAR map, and thus they share the same frame. From

now on, we set the frame of prior LiDAR map as the global frame.

The pose of reference keyframe obtained from VO, will serve as the

initial guess to the registration. A refined pose estimation, will be

obtained from the registration, and passed into a pose graph in

local mapping thread to adjust the poses of keyframes (see

Figure 2). After the registration and pose graph optimization, the

local visual feature map will be aligned with the LiDAR map, and we

will refine the positions of the sparse 3D visual features by their

surrounding LiDAR point cloud.

4 | VISUAL PROCESSING

In this section, we explain in detail the four main visual processing

modules in the proposed visual localization system, including

semidense reconstruction, feature refinement, multimodal registra-

tion, and optimization.

4.1 | Semidense visual reconstruction

As real‐time localization is the primary goal of this study, instead of

attempting to reconstruct the environment perfectly, we develop a

simple but effective semidense visual reconstruction algorithm that

involves two main steps: (a) estimate depth and point cloud of every

keyframe in the sliding window, and (b) aggregate these keyframes'

point clouds based on the VO results to form an integrated local 3D

semidense map.

As a common practice, we perform stereo block matching to

estimate the depth of each keyframe, which minimizes the sum of

squared distance error over image patches to compute the disparities.

Specifically, we minimize the photometric error between the left and

right image with respect to the disparity d for point = { } ∈x y zp , , 3 :

σ
⎡

⎣
⎢

∥ ∥ ⎤

⎦
⎥

= ( ) − ( − )r r u v u d vI Iarg min
1

, where , , ,
d

L R RI I
int
2

2 (1)

where u = (u, v) and uR = (uR, vR) represents the measurement pairs of

point p in the left and right image, uR = u − d, and I(⋅) represents the

image intensity with variance σint
2 . Thus, the variance of the disparity

d can be computed based on covariance propagation:

σ
σ

σ
⎜ ⎟= ⎛

⎝

⎛
⎝

∂

∂
⎞
⎠

⎛
⎝

∂

∂
⎞
⎠

⎞

⎠
=

−
r
d

r
d g

1 2
,d

T
I I

I

2

int
2

1
int
2

2
R

(2)

where gIR represents the image intensity gradient in the right

image. As a result, the covariance of [u, v, d]T is given by
σ

σ

σ

Σ =

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

0 0

0 0

0 0 d

I

pixel
2

pixel
2

2

, where σpixel
2 is the known variance of image

pixel noise. After computing the disparity, we recover the 3D point p

with the camera intrinsic parameters (such as focal length f, optical

centers (cu, cv)) and stereo baseline b as follows:

⎧

⎨

⎪
⎪

⎩

⎪
⎪

=
( − )

=
( − )

=

x
u c b

d

y
v c b

d

z
fb
d

,

,

.

u

v (3)

We also propagate the covariance of (u, v, d)T to obtain the

covariance of the 3D point p:

Σ Σ= =
⎡

⎣

⎢
⎢

−( − )

−( − )

−

⎤

⎦

⎥
⎥

b
d

d u c
d v c

f

J J J,

0

0

0 0

.T
u

vp I 2
(4)

Since the depth estimate of p is uncertain, as in Mur‐Artal and Tardós

(2015), we perform the depth outlier removal and smoothing to

suppress the noise by its neighbor pixels.

After we reconstruct the point cloud for every single keyframe

in the sliding window, we now aggregate them into a consistent

local 3D point‐cloud map. By choosing one keyframe in the window

as the reference frame, we transform other keyframes' point clouds

into this reference frame and accordingly propagate the covar-

iance. Specifically, = { … … } ∈ [ ]+ −F F F F F r a b, , , , , , , ,a a r b b1 1 repre-

sents the set of keyframes in the sliding window, and Fr is the

reference frame. Let θ( ) = [ ] ∈ ( )SET
C t

0 1
3r a r a

r a r a
, ,

, , represent the

rigid transformation from Fa to Fr, Cr,a is the rotation matrix, and

θ ω= [ ] ∈ ( ) ∈set 3r a r a
T

r a
T T

, , ,
6 is the Lie algebra associated with SE

(3), and ω and t represent the rotation and translation 3D vector,

respectively. We then directly apply this rigid transformation to

transform a point { }pa with covariance ( )
{ }pcov a in keyframe Fa to

reference frame Fr, that is θ[ ] = ( )[ ]
{ } { }p T p
1 1

r

r a r a

a

, , .

To compute the covariance of the aggregated point cloud, we first

denote the error states of { } { }p p,r a and θ by δ δ{ } { }p p,r a , and δθ,

respectively. During update, the 6DOF pose estimate is updated by

θδ= ( )+ ∧ −T Texpr a r a r a, , , , where
−Tr a, and +Tr a, represents the pose before

and after update, where the wedge operation ∧ is given by Barfoot

(2017): θ
ω ω

δ
δ

δ

δ δ
= [ ] = [

⌊ ⌋
] ∈∧ ∧ × ×

t

t

0 0
r a

r a

r a

r a

T

r a
,

,

,

, , 4 4 , and ⌊.⌋× denotes the

skew‐symmetric matrix of a 3D vector. The update operation for point is

simply additive: δ= ++{ } { } −{ }p p pr r r and the covariance of { }pr is updated

as follows:

θ
θ

θ
δ

δ

δ

δ

δ

δ

δ

δ

δ
⎜ ⎟ ⎜ ⎟( ) =

∂

∂
( )

⎛

⎝

∂

∂

⎞

⎠
+
∂

∂
( )⎛

⎝

∂
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⎠

{ }
{ }

{ }

{ }
{ }

{ }

{ } { }
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p
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p

p

p p
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r

a
a

r

a

T r
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r a

r

r a

T
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(5)

where

δ

δ

∂

∂
=

{ }

{ }

p

p
C ,

r

a r a, (6)

θδ
δ

∂

∂
= ⎡⎣−⌊ ⌋ ⎤⎦

{ }
{ }

× ×

p
p I .

r

r a

r

,
3 3 (7)
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4.2 | Multimodal point cloud registration

We now register the aggregated point cloud (i.e., semidense visual

map) with the PLM to provide accurate localization solution with

bounded navigation errors. The workflow of registration is shown in

Figure 4. For multimodal point cloud registration, we adapt the

standard NDT method to compensate for the two different

modalities of point clouds to be registered.

In the standard NDT (Magnusson, 2009), instead of directly

matching individual points in the point cloud, the point cloud is

represented by a set of Gaussian distributions with sample mean

μ and covariance Σ:

μ ∑=
=

m
p

1
,

k

m

i
1

(8)

μ μ= [ − … − ]n p p ,m1 (9)

Σ =
−

⊤

m
nn

1

1
. (10)

In this way, NDT is expected to be insensitive to uneven sample

distributions and reduce the memory requirements for large‐scale maps

by efficiently compresses the original point cloud data. Also, as there is

no explicit nearest neighbor search in the NDT, it is computationally

efficient and can converge faster from a wider range of initial pose

estimates than the ICP (Huhle, Magnusson, Straßer, & Lilienthal, 2008;

Magnusson, Nuchter, Lorken, Lilienthal, & Hertzberg, 2009). Two

variants of NDT are widely used: (a) point‐to‐distribution (P2D) variant

of NDT (Magnusson, 2009), which formulates the registration of a new

scan as a problem of fitting the points to the distribution in the target

point cloud; and (b) distribution‐to‐distribution (D2D) NDT (Stoyanov,

Magnusson, Andreasson, & Lilienthal, 2012), which matches the

distributions in the source and target and is significantly faster but

less robust than P2D variant (Magnusson, Vaskevicius, Stoyanov,

Pathak, & Birk, 2015). For this reason, we employ the P2D as the

baseline NDT for our multimodal point cloud registration approach,

which is experimentally found to perform better than the D2D NDT.

Specifically, given the Gaussian pdf p μ Σ
π Σ

( | ) =
( ) ( ( ))∕ ∕

x , 1

2 det3 2 1 2

μ μΣ(− ( − ) ( − ))−x xexp T1

2
1 , in the P2D‐NDT, the optimal pose

estimate T (θ), is found by maximizing the following likelihood

function:

θ ∏Ψ( ) = ( )
=

p p, , _ ,src tar
i

n

i src i
1

src

(11)

θ μ Σ( ) = ( ( ( ∣ ) + )p c p c pp T p_ _ , ,i src i i src i j j io io (12)

where = { }p _src src i , i∈ {1, 2,…, nsrc}, is the set of points in source

point cloud; tar is the set of Gaussian distributions created from the

target point cloud; μ( Σ ),j j is the closest Gaussian component to

point psrc_i among all Gaussian components in tar . pio represents the

expected ratio of outliers. The normalization constants ci, cio can be

determined by requiring that the probability mass of pi (psrc_i) equals

one within the space spanned by a cell.

Uncertainty is leveraged when registering the noisy visual point

cloud to the LiDAR point cloud. Intuitively, a point close to the

reference keyframe in the source point cloud has smaller uncertainty,

and we expect a better alignment with the LiDAR map than those far

away from the reference, resulting in better pose estimates of the

reference keyframes than treating all points equally. Unlike the

conventional P2D‐NDT, which assigns simply the same outlier ratio to

every point, we derive the expression of this outlier ratio of every

point in a probabilistic way, and this outlier ratio can be regarded as a

weight when performing registration. We thus term this method by

Probabilistically Weighted NDT (ProW‐NDT). In particular, the probability

that a point is truly matched with a cell should be proportional to the

probability mass of the Gaussian distribution of this point within this

cell. We approximate the outlier ratio of point psrc_i as follows:

Σσ

σ

σ

σ

=
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
= ( )− ∕

v
v
v

v vDiag ,i

1

2

3

1 2 (13a)

μ Σ σ∫ ∏ ⎜ ⎟= − ( ∣ ) ≃ − ⎛

⎝

⎞

⎠=

a p d
v

x x1.0 , 1.0 erf
2

2
,i

D i i
k

k

1

3

(13b)

=
⎧

⎨
⎩

( ≤ )

( < < )

( ≤ )

p
a

a a
a

0.35 0.35 ,

0.35 0.9 ,

0.9 0.9 ,
io

i

i i

i

(13c)

F IGURE 4 Flow chart of registration. Points in the semidense visual point cloud are assigned with different weights by uncertainties (see
Equation (13)); Then the point cloud registered with the prior LiDAR map; The poor registration results will be removed by designed criteria
described in Section 4.2.1. Only the good registration results will be used in the later pose graph optimization [Color figure can be viewed at

wileyonlinelibrary.com]
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where μ Σ( ),i i represents the uncertainty of psrc_i in the visual point

cloud generated in the process of stereo semidense reconstruction. erf(⋅)

denotes the Gauss error function. In (13a), Diag (.) returns the matrix

only keeping the diagonal items of the original matrix. We omit the off‐
diagonal items of the covariance matrix for simplicity in the integral of

multivariate Gaussian. The domain of integral D is [μi− v, μi + v], which

spans the cubic cell centered at μi and with size of 2v. The piecewise

function for pio in (13c) accounts for the unmodeled noise. Applying a

Gaussian ˜ ( )p p _i src i to approximate the log‐likelihood of original Gaussian

pi(psrc_i), the final score function of NDT is given by Magnusson (2009):

θ

θ μ θ μΣ∑

( )

= ⎛
⎝
− ( ( ) − ) ( ) ( ( ) − )⎞

⎠=

−

f

d
d

T p T p

, ,

exp
2

_ _ ,

src tar

i

n

src i j
T

j src i j
1

1
2 1

src

(14)

where the constants d1 and d2, are computed in the approximation

by:

=− ( + ) + ( )

= − ((− ( (− ∕ ) + ) + ( ))∕ )

d c c c
d c c c d

log log ,

2 log log exp 1 2 log ,
i io io

i io io

1

2 1
(15)

The optimal pose estimate θ can be obtained by minimizing the above

score function in Equation (14).

4.2.1 | Remove poor registration results

As poor registration is inevitable in practice, we advocate the

following criteria to filter out bad results:

(i) We evaluate the fitness score and information matrix of ProW‐
NDT registration. The Hessian matrix Hreg of score function (14)

can be computed at the final pose estimation θ. This Hessian

matrix can be used as an estimation of the information matrix.

We set hλ to be proportional to the minimum eigenvalue of

negative Hessian matrix Hreg,

λ ∝ { (− )}Hh Eigenmin ,reg (16)

hλ is usually large when a correct registration is obtained from ProW‐
NDT, and vice versa, a bad registration always corresponds to a small

value of hλ. As for the fitness score, a very large fitness score usually

implies a poor registration. However, this clue often fails to reflect

the true situation, and an accurate pose estimation might correspond

to a high score (Magnusson, 2009). Only when the score stays within

a threshold, and hλ is bigger than a certain value, we will consider to

add the registration result to the pose graph.

(ii) We are able to get the relative‐pose between two keyframes from

VO or NDT registration only. The relative pose estimated by VO

between two nearby keyframes is usually with considerable

accuracy. If the pose estimation from registration is reasonable,

the relative pose obtained from it should be close to that obtained

form VO. Therefore, we will reject the registration result of the

keyframe when its relative pose with respect to the last registered

keyframe has a large difference with that got from VO.

(iii) VO occasionally fails to provide a good pose estimation due to

aggressive motion or great illumination change, while ProW‐
NDT relying on structural information can give a good pose

estimation. However, the criterion (ii) probably rejects the good

pose estimation from ProW‐NDT. So we adopt another strategy

to avoid these cases. If the standard deviation of several relative

poses from ProW‐NDT is smaller than the one obtained from

VO, the pose estimation from ProW‐NDT will be added to the

pose graph by force. This is reasonable, because in a short period

of time, relative poses will not strongly fluctuate with a large

standard deviation. As the trajectory of robot is always smooth,

the estimation from ProW‐NDT with mild fluctuation is

acceptable in most cases.

(iv) Like most registration methods, the inlier ratio of the source

point cloud, and the mean distances of the inlier correspon-

dences can also reflect the circumstance of the registration

result. We also take these criteria into consideration.

For example, in Figure 5, the norm of absolute translation error of

the initial guess from VO and the registration result are shown, when

we run the proposed method on sequence 05 of KITTI data set

(Geiger et al., 2012). It is obvious that the registration result is with

smaller errors than the initial guess in most cases. In this run, 873

keyframes are created totally, 331 ProW‐NDT are performed, and

three registration results are rejected by the above criteria.

4.3 | Structure‐constrained visual feature
refinement

While the proposed ProW‐NDT is robust to some extent, it still can

be affected by the initial guess provided by VO. To improve the VO

and thus the ProW‐NDT, we propose to refine the sparse visual

feature map by leveraging the structural constraints inferred from

the prior LiDAR map. To this end, we formulate the following

maximum a posteriori (MAP) estimation problem:

∏

( | Θ ) ∝ ( | Θ ) ( |Θ )

= ( | Θ ) ( | )
=

∣ ∣

p p p

p pp p

max , , , , ,

, , ,
k

k k
1

k (17)

where = { ∪ ∪ ⋯∪ }p1 2 is the set of visual measurements,

and = { … | |}u u u, , , ,k k k k k,1 ,2 is the observation set of one 3D

feature pk, since a feature may be observed in different images;

= { … }| |p p p, , ,1 2 is the set of 3D sparse visual features that are

initially estimated in the local mapping thread; = { … }| |q q q, , ,1 2 is

the set of points in the prior LiDAR map; Θ = {θ1, θ2,…, θ∣Θ∣} is the set

of camera poses Ti(θi)∈ SE(3) expressed in the global frame. Note

that as both sparse visual features and the prior map are expressed in

the same global frame, we have ( |Θ ) = ( | )p p, . The common

assumption that visual measurements are independent leads to
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θ( | Θ ) = ∏ ( | )
=

∣ ∣p pp u p, , , ,k k i k i k i1 ,
k , where p θ( | ) =u p , , :k i k i,

θπ Σ( ( ( ) ) )u T p; ,k i i i k k i, , with the covariance of observation uk,i

denoted by Σk,i, which is related to the image pyramid level where

it is observed. With that, as a common practice, maximizing the

measurement likelihood ( | Θ )p p , ,k k is equivalent to minimize the

reprojection errors:

( | Θ )⇔p pmax , ,k k (18)

θ

ρ

π

Σ( )∑=

= − ( ( ) )

=

∣ ∣

−e r r r

u T p

min _ _ _ , with _

.

proj k
i

proj k i
T

k i proj k i proj k i

k i i i k

1
, ,

1
, ,

,

k

(19)

Note that in our implementation, the robust Huber kernel (Z.

Zhang, 1995) is used to compensate for possible measurement

outliers.

Ideally, we would like to have a sparse visual feature pk

exactly matched to the point qk in the prior LiDAR map, which is

clearly not the case in practice primarily due to the sparseness of

LiDAR point clouds; even if it is the case, it is yet impossible to

find the correct correspondence because the LiDAR map only

contains 3D positions of the points. To address this issue, we

enforce structure constraint that penalizes the misalignment

between the 3D visual feature and the LiDAR point cloud.

Specifically, the proposed approach creates a surfel yl

( ∈ { … } ⊆y y y y, , ,l M1 2 ) to summarize the LiDAR point cloud

around the visual feature qk by its sample mean μyl and

covariance Σyl, from which we build the structural error term:

μ Σ( | ) = ( | ) = ( ) ⇒p pp p y p ; ,k k l k yl yl (20)

η μ μΣ− ( ( | )) = + ( − ) ( − ) ⇒−p p y p plog
1

2
k l k yl

T
yl k yl

1 (21)

μΣ= = −−e r r r p_ _ _ , with _ ,struct k struct k
T

yl struct k struct k k yl
1 (22)

which is leveraged to refine the visual features. When adjusting the

visual features, the corresponding surfel of pk will not change; even if it

is a false positive association between pk and yl, robust kernel and

outlier rejection will be employed. Many factors may deteriorate this

data association, such as registration error, poor 3D visual feature map,

inherited error from an imperfect LiDAR map. As data association is

determined before optimization, the structural error should be robust

to noisy data association. To tradeoff the computational cost and

accuracy, inspired by the fast global registration (Zhou, Park, & Koltun,

2016), we use the Black‐Rangarajan duality between robust estimation

and line process (Black & Anandan, 1996; Black & Rangarajan, 1996) to

deal with bad data associations. That is, assuming ck,l is a line process

over the correspondence of pk and yl, we jointly optimize pk and ck,l by

instead using the following structural cost function (see (22)):

Σ= + Φ( )−c ce r r_ _ _ ,struct k k l struct k
T

yl struct k k l,
1

, (23)

αΦ( ) = ( − )c c 1 ,k l k l, ,
2 (24)

where ck,l can be considered as a soft data association, ranging over

[0, 1] and modeling the validity of the data association; Φ(ck,l)

encodes the belief of a genuine correspondence, and minimizing

this error term (ck,l→ 1) believes this correspondence as the true

positive. If it is a false positive correspondence that will introduce a

spurious constraint corrupting the optimization, Φ(ck,l) is able to

devitalize this correspondence by pushing (ck,l→ 0). It is important

to note that if one eigenvalue of the covariance of the surfel Σyl is

near zero, the structural error becomes the distance of point to

plane. Thus, when Σyl is nearly singular, we will modify it by

enlarging its small eigenvalues as mentioned in Magnusson (2009).

The scalar α balances the strengths of alignment term and prior

term. In our implementation, we begin with a large α, and then

decrease it gradually during the optimization.

At this point, we are ready to leverage the prior LiDAR map to

refine the visual features by minimizing both the reprojection error

and the structural error:

∑{ * Θ*} = ( + )
Θ

=

∣ ∣

we e, arg min _ _ ,
k

reproj k struct k
,

1

(25)

where w denoting the weight parameter to balance between structural

error and reprojection error varies for different correspondences:

λ
∝w

1
,

l1
(26)
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F IGURE 5 An example of the norm of absolute translation error before and after registration, which is performed on Sequence 05 of KITTI

data set. (a) Norm of translation error; (b) A close view [Color figure can be viewed at wileyonlinelibrary.com]
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where λl1 is the smallest eigenvalue of Σyl and used to penalize

nonplane surfel. As an example shown in Figure 6, we refine the

sparse feature by it is surrounding surfel, the surfel summarizes

the distribution of the point cloud in a spherical field, centered at the

sparse feature point with a radius of 0.5 meters. If less than four

points in the spherical field are founded, we will not create a surfel to

refine this sparse feature. As the planar surfel is usually with less

noises, so we set a bigger weight to it.

4.4 | Pose graph optimization

We construct a pose graph shown in Figure 7 to fuse the registration

and VO results, in which the registration results are added as the

prior poses of reference keyframes. Since we have maintained

the covisible graph in the local mapping thread, local keyframes are

found out by checking the number of covisible visual features at the

current keyframe, and a keyframe with sufficient covisible features is

classified as a local keyframe. The keyframe set in the pose graph is

denoted by = { … }+ −F F F F, , , ,i i j j1 1 , with pose estimates

ˆ ˆ … ˆ ˆ
+ −T T T T, , , ,W i W i W j W j, , 1 , 1 , . The relative pose between two keyframes

Fk, Fl, k, l∈ {i,…, j}, k ≠ l follows a Gaussian distribution with mean
ˆ = ˆ ˆ−
T T Tk l W k W l, ,

1
, and covariance Σk,l. The registration result ŤW r, serves

as the prior of the reference keyframe, Fr. The residual of prior

constraint rr is also Gaussian with covariance Σr, which is computed

as the inverse of the Hessian matrix of NDT score function at final

pose estimate (Magnusson, 2009). Therefore, the cost function can

be formulated as follows:

ρ ρΣ Σ( )∑ ∑= ( ) +
−

< ≠

−e r r r r ,
r

a r r r
k l k l

b k l k l k l
T 1

,
,

T
,
1

, (27a)

( ) ( )= ̆ = ˆ− −
r T T r T Twith log , and log ,r W r W r k l k l k l,

1
, , ,

1
, (27b)

where ρa and ρb are the robust kernels. As our criteria for

rejecting poor registration may occasionally fail, we further employ

the dynamic covariance scaling (DCS) approach (Agarwal, Tipaldi,

Spinello, Stachniss, & Burgard, 2013) to robustify our pose graph

optimization, which is solved iteratively.

F IGURE 6 Surfels are extracted around sparse visual features from the prior LiDAR map. They are used to correct the positions of the 3D
Visual features. Extracted surfels are color‐coded by normal directions (a) Sparse visual features in LiDAR map; (b) Surfels from the prior LiDAR

map; (c) A close view of the extracted surfels [Color figure can be viewed at wileyonlinelibrary.com]

F IGURE 7 We construct the pose graph to fuse the registration and VO results. The blue circles represent the pose of the local keyframes.
The red solid edges represent the relative‐pose constraints from VO. The yellow dash edges denote the prior constraints obtained from ProW‐
NDT. VO, visual odometry [Color figure can be viewed at wileyonlinelibrary.com]
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5 | EXPERIMENTAL VALIDATION

To validate the proposed real‐time visual localization system, we test

the proposed method on both simulated and real‐world data sets. The

simulated data set is collected in the ROS/Gazebo simulation engine

(Ros, 2018). The real‐world data sets include: (a) the well‐known KITTI

odometry benchmark (Geiger et al., 2012), which has data sequences

collected under various road conditions such as rural, urban, and

highway, (b) and the KAIST Urban data set (Jeong et al., 2019) collected

in complex urban scenarios with abundant moving objects, and (c) the

data collected using our own robot/sensors in the Zhejiang University

(ZJU) campus. We implement the proposed visual localization system

based on the state‐of‐the‐art feature‐based ORB‐SLAM2 (Mur‐Artal &
Tardós, 2017a), and primarily adapt its visual tracking and local

mapping thread, while we do not perform loop closing and global

bundle adjustment. This is primarily due to the fact that loop closures

are computationally intensive as shown in the timing consuming results

in (Mur‐Artal & Tardós, 2017a), and we have a prior map (although of a

different modality) that is able to constrain localization drift. The

performance metrics used in our evaluation include the averaged root

mean square error (RMSE) of absolute trajectory error (ATE; Sturm,

Engelhard, Endres, Burgard, & Cremers, 2012), the mean of absolute

translation and rotation errors (as in the vein of Kim et al., 2018) to

evaluate the localization accuracy and CPU runtime to evaluate the

computational cost. All tests run on an Intel Core i7‐7700k desktop

computer with 16GB RAM without GPU support. Videos fragments

showing the performance of the proposed system on different data

sets can be found on https://youtu.be/VnfVCu80TAc.

5.1 | Gazebo simulation

We create a synthetic environment in Gazebo, which includes houses,

trees, vehicles, and pedestrians. Figure 8 shows a bird's‐eye view of

such a simulated environment. We use a Pioneer 3‐DX robot (Pioneer,

2018) to collect data set in this synthetic environment, and the robot

has a maximum speed of 2.5m/s and is equipped with multiple

sensors, such as a Velodyne LiDAR (Velodyne VLP‐16, 2018), a stereo

camera with a baseline of 0.4m. The range measurements of the

virtual LiDAR are corrupted by Gaussian noise with a standard

deviation of 0.01m, and the images obtained from the stereo camera

are also injected Gaussian noise with a standard deviation of 0.01. The

details related to the noise of the virtual sensor can be found in

Gazebo Sensor Noise Model (2018). In this synthetic data set, we have

the perfect parameters of all the sensors, such as the intrinsics and

baseline of the stereo camera, and the extrinsics between the stereo

camera and Velodyne, which facilitates our evaluations at different

noise levels. As in real‐world experiments, we may not have true

calibration parameters of the stereo camera,

In particular, in this Gazebo simulation, we add 5, 10, and

15 pixel × m to the product of baseline and focal length, f × b. These

disturbances will cause different degrees of damage to the semidense

reconstruction, and pose challenges to feature‐based VO.

Three different disturbances are applied to ground truth to generate

three sequences. We run the proposed method six times on each

sequence and compute the RMSE of ATE for evaluations, whose

results are shown in Table 1. In this table, Mean represents the mean

of the RMSE of ATE in six runs; Mean/Traj represents the Mean

divided by the length of the trajectory; Max and Min represent the

maximum and minimum RMSE of ATE in six runs. Better results are

highlighted in bold. For fair comparisons, the proposed method and

ORB‐SLAM2 use exactly the same parameter settings for all the

tests. As evident, the average, maximum and minimum ATE of the

proposed method are all smaller than ORB‐SLAM2 under the three

different noise levels. When the deviation is small, the proposed

method is only slightly better than ORB‐SLAM2; while if the

deviation is relatively large, our system performs significantly better,

though the errors of both methods become larger. Figure 9 depicts

the trajectories estimated by the proposed method and ORB‐SLAM2

under different disturbances to calibration parameters. Clearly, in

the case that we do not have accurate calibration parameters or good

3D reconstruction of the scene, the proposed visual localization with

prior LiDAR map also outperforms the visual SLAM, which shows

that our method is robust to the calibration disturbance.

F IGURE 8 A bird’s‐eye view of the synthetic environment in
Gazebo, the blue line marks the trajectory of the robot when

collecting data [Color figure can be viewed at wileyonlinelibrary.com]

TABLE 1 RMSE on Gazebo data set

Proposed ORB‐SLAM2

Noise level Mean (m) Mean/Traj (%) Max (m) Min (m) Mean (m) Mean/Traj (%) Max (m) Min (m)

5 0.3962 0.1345 0.4150 0.3751 0.6916 0.2348 0.7409 0.6636

10 0.8338 0.2831 0.8649 0.7508 1.8472 0.6272 4.5553 1.3713

15 1.2249 0.4159 1.3265 1.1019 2.0637 0.7007 2.0721 2.0519
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5.2 | Experimental evaluation on KITTI data set

The KITTI data set (Geiger et al., 2012) is recorded on a vehicle

equipped with a variety of sensor modalities such as high‐
resolution color and grayscale stereo cameras, a Velodyne LiDAR

and a high‐precision GPS/IMU inertial navigation system. The

odometry benchmarks are widely used for evaluating the accuracy

of the localization algorithm, which is captured by driving around a

midsize city, in rural areas and on highways. The ground truth

poses are obtained from the GPS/IMU localization unit, and we use

the provided ground truth to build up the prior LiDAR map by

aggregating all LiDAR scans together. It should be noted that, while

sequence 00–10 provide ground truth poses, the provided ground

truth is not perfect in some sequences and inconsistencies appear

in some loop closure areas, mainly in the vertical direction, which

may introduce inaccuracies to our prior LiDAR map. In particular,

the inconsistency on sequence 08 is large, negatively degrading the

performance evaluation of our system. Nevertheless, for complete-

ness, we test the proposed system on all the sequences while using

the same parameter setup.

The average ATE over six runs by using the color images are

shown in Table 2. From the table, we can see that with the prior

LiDAR map, the position error is greatly reduced on most sequences.

Note that Sequence 01 is collected on a highway, and few 3D

structures are captured by the LiDAR and the stereo camera. The

main structures in this scene are road surfaces. In this case, the

LiDAR map fails to provide substantial help for online visual

localization. It should be noted that there are some structureless

scenarios where registration fails to provide a valid result, and thus

the prior LiDAR map, is not able to provide useful information for

online visual localization. In Figure 10, we plot one typical estimated

trajectory of six runs. A global semidense visual map is shown in

Figure 11, which is obtained by aggregating all the local maps

together.
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F IGURE 9 The trajectory estimated by the posed method and ORB‐SLAM2 on Gazebo simulated data set under different disturbances. The
red solid line indicates the trajectory of ground truth. Black dot‐dash is estimated by ORB‐SLAM2, and the blue dash is got from the proposed
method. (a) On sequence with noise 5; (b) On sequence with noise 10; (c) On sequence with noise 15 [Color figure can be viewed at
wileyonlinelibrary.com]

TABLE 2 RMSE on KITTI data set (color stereo)

Proposed ORB‐SLAM2

Mean (m) Mean/Traj (%) Max (m) Min (m) Mean (m) Mean/Traj (%) Max (m) Min (m)

Sequence 00 0.5030 0.01351 0.5315 0.4798 2.2118 0.05939 2.2459 2.1754

Sequence 01 5.7062 0.23260 7.2113 3.3990 4.5987 0.1875 5.5239 3.2422

Sequence 02 0.4388 0.00866 0.5035 0.3608 3.9894 0.07873 4.2795 3.6798

Sequence 03 0.5492 0.09791 0.6406 0.4695 3.2926 0.58702 3.3234 3.2346

Sequence 04 0.3691 0.09377 0.4337 0.2505 0.6641 0.1687 0.7549 0.5652

Sequence 05 0.3315 0.01503 0.3450 0.3144 1.0445 0.04736 1.0749 1.0121

Sequence 06 0.5269 0.04274 0.5814 0.4635 1.5535 0.1260 1.6774 1.4067

Sequence 07 0.1901 0.02736 0.2019 0.1750 0.5999 0.08635 0.7269 0.5334

Sequence 08 2.9526 0.09162 3.0843 2.8029 3.1963 0.09918 3.3789 3.0835

Sequence 09 0.2100 0.01231 0.2247 0.1938 2.7872 0.1635 4.0569 1.6237

Sequence 10 0.1838 0.01999 0.1952 0.1720 1.7234 0.1874 1.9307 1.6547
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As no open‐source algorithm using the same information as the

proposed system is available, we compare the proposed with Kim's

method (Kim et al., 2018) which uses the same inputs as the

proposed approach. It should be noted that the results of our

method are from real‐time performance, while the results reported

in Kim et al. (2018) are not. As in the vein of Kim et al. (2018),

Table 3 shows the averaged (in six runs) mean of absolute

translation and rotation errors using grayscale stereo images on

KITTI data set, which are different from the averaged RMSE shown

in Table 2. Note that in Kim et al. (2018) they did not show the

performance on sequence 01. From these results, we can see that

the proposed method has comparable accuracy with the non‐real‐
time method (Kim et al., 2018).

5.3 | Experimental evaluation on KAIST urban data
set

KAIST urban data set (Jeong et al., 2019) was collected in complex

urban driving scenarios. We further tested the proposed method on

the Urban 28 Sequence with a total length of 11.47 km. Figure 12

shows some sample images in this sequence. These complex driving
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F IGURE 10 The estimated trajectories on some sequences of KITTI data set (Geiger et al., 2012). Red solid line indicates the trajectory of

ground truth. Black dot‐dash is estimated by ORB‐SLAM2, and blue dash is got from our proposed method. (a) On sequence 00; (b) On sequence
02; (c) On sequence 03; (d) On sequence 05; (e) On sequence 06; (f) On sequence 07; (g) On sequence 08; (h) On sequence 09; and (i) On
sequence 10 [Color figure can be viewed at wileyonlinelibrary.com]
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scenarios are challenging for localization tasks due to significant

structural variation, wide roads, high speed, and lots of dynamic

objects. To fully utilize the sensor measurements and reserve enough

time for back end optimization, the data in this sequence are played

at half of the original recording rates for all tests. Since there are lots

of dynamic moving vehicles in this sequence, which poses significant

challenges for registering the reconstructed point cloud with the

prior map, the proposed method fails to go through the whole

trajectory without restarts due to consecutive failures of registration.

Thus we perform two tests: (i) without restarts, we test the proposed

system in a portion of the Urban 28 Sequence with 730 s along a

trajectory of 4.1 km; (ii) with restarts, the system is tested on the

whole 11.47 km. Benefiting from the failure detection of registration

in Section 4.2.1, the system will restart automatically after 20

consecutive failures for the registration are detected. It should be

noted that we aim to provide a vision only localization method, even

with restarts, the experiments demonstrate the feasibility of our

algorithm in a real complex urban scenario. And the initial position

guesses in the map where restart the system can be easily obtained

by relocalization or GPS as we start the system from the beginning.

For the test (i) without restarts, we perform visual localization

not only over the LiDAR map constructed on the same data (Urban

28 sequence, collected on December 12, 2018), but also the LiDAR

map constructed on other data (Urban 38, 39 Sequences, collected

on May 30, 2019). The mean of translation and rotation errors are

shown in Table 4, where “PROPOSED 1” are the results of the

proposed approach using the (in‐run) LiDAR map, and “PROPOSED 2”

are the results of the proposed method using the LiDAR map

constructed on (out‐run) data. The LiDAR maps are constructed by

using the ground truth poses provided officially. Since the points on

dynamic objects are removed, there are hollows in one single LiDAR

map. We combine the LiDAR maps on Urban 38 and Urban 39 by

transforming them into the same reference of frame. From Table 4,

we can find the proposed method without loop closures is

significantly better than the ORB‐SLAM2 with loop closures. For

“PROPOSED 2,” although the images used for online localization

have a time gap of about 6 months with the PLM, the out‐run LiDAR

F IGURE 11 A global semidense visual map on sequence 05 of
KITTI data set [Color figure can be viewed at wileyonlinelibrary.com]
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map can still provide substantial help for online visualization.

“PROPOSED 2” has slightly lower errors than “PROPOSED 1” due

to its higher map quality. The rotation estimates of the proposed

system are slightly worse than the baseline due to the jumps while

correcting the drift by registration. The trajectory estimates and the

ground truth are depicted in Figure 13.

For the test (ii) with restarts, the proposed system restarts four

times (0.349 restarts per km) along the whole 11.47 km of Urban 28

sequence. And the mean of translation error and rotation error are

4.31m (0.0376%), 2.25 deg. In Kim et al. (2018), the authors also

tested their method on their own collected sequence (with a total

length of 15.7 km) over almost the same route of Urban 28 sequence.

Kim's method needs 28 restarts (1.783 restarts per km) for

traversing the whole 15.7 km. Comparing the performance with

Kim's method, we can see that the proposed method is more robust

in the complex urban driving scenario. The estimated trajectory

aligned with ground truth and four restart positions of our method

can be seen in Figure 14.

5.4 | Experimental evaluation on ZJU data set

We used a wheeled robot to collect data sets in ZJU campus. As

shown in Figures 15 and 16, our mobile robot is equipped with

multiple sensors, such as Velodyne (Velodyne VLP‐16, 2018), Xsens
IMU (Xsens MTi‐300 AHRS; Xsens, 2018), and two synchronized

industrial cameras (MV‐GE231GC‐T Industrial Camera; Mind Vision

Technology, 2018). Both the synchronized stereo cameras and LiDAR

runs at 10 Hz, and the IMU is at 400 Hz. We calibrate the LiDAR and

stereo camera by Dhall, Chelani, Radhakrishnan, and Krishna (2017).

The timestamps of each sensor are synchronized to the same time

axis by hardware. As the widely used RTK‐GPS fails to give valid

measurements in most places in our campus due to the tall buildings

and dense trees, we use a LiDAR‐IMU SLAM system to provide the

F IGURE 12 Sample images of the KAIST Urban 28 sequence (Jeong et al., 2019) [Color figure can be viewed at wileyonlinelibrary.com]

TABLE 4 Mean of translation and rotation errors on KAIST urban data set (4.1 km)

Translation Rotation

Mean m) Mean/Traj (%) Max (m) Min (m) Mean (deg) Max (deg) Min (deg)

ORB‐SLAM2 7.5925 0.18467 7.8441 7.3017 1.4274 1.7704 1.2348

PROPOSED 1 3.8296 0.09315 5.4923 2.1727 1.9840 2.1727 1.6441

PROPOSED 2 2.6312 0.06400 3.9114 1.8144 1.8325 2.3829 1.5549

F IGURE 13 Trajectory estimates overlaid on the satellite map,

which are performed on a portion of Urban 28 sequence (4.1 km)
without restarts. The “Proposed 1” is the proposed visual localization
using in‐run PLM, and “Proposed 2” is the proposed visual localization

using out‐run PLM with a time gap of about 6 months; That is, the two
LiDAR maps are built about 6 months apart. PLM, prior LiDAR map
[Color figure can be viewed at wileyonlinelibrary.com]

1018 | ZUO ET AL.



ground truth. In this SLAM system, the keyframe strategy is used, and

only a portion of scans during the whole trajectory is used for

mapping. A local LiDAR point cloud map by assembling several scans

is maintained. Keyframe scans are registered with this local LiDAR

point cloud map by P2D‐NDT. The keyframe poses are added into the

pose graph optimization. We use IMU for the motion compensation

in one single LiDAR scan and also IMU preintegration (Forster,

Carlone, Dellaert, & Scaramuzza, 2016) to gather all the IMU

measurements between two keyframes, which are then used as the

initial guesses of the registrations. In addition, we also use images for

loop‐closure detection for this LiDAR‐IMU SLAM system, which is

performed by using DBoW2 (Gálvez‐López & Tardos, 2012). Once

the loop closure is detected, we will use the generalized‐ICP (Segal,

Haehnel, & Thrun, 2009) to register the current local LiDAR map to

the loop‐keyframe, and the resulting pose by the generalized‐ICP is

added to the pose graph as a loop‐closure edge.

We collected six sequences: Sequence 1, 2, 3, and 5 are collected

in scene A, and sequence 4 and 6 are collected in scene B. These data

sets are collected at different times during the day, and in various

weather, such as sunny, cloudy, after rain. See Figure 17 and Table 5

for the details. It is clear that significant changes occur among

different sequences, such as light conditions, cars, pedestrians, and

weathers. To test whether the proposed method works under large

path deviations, we collect data sets while moving in different

directions. Sequence 1, 3, and 5 are collected in counterclockwise

routes seen from a bird's‐eye view, while sequence 2, 4, and 6 are

clockwise.

5.4.1 | Localization over in‐run prior LiDAR map

We first run the proposed system with images and PLM recon-

structed on the same sequence, which means that the environments,

while we construct the LiDAR map and perform the online visual

localization, are the same. Six runs on each sequence are performed

as the preceding experiments, and the experimental results are

shown in Table 6. From the table, we can see that in each sequence,

our method has the smaller errors than the ORB‐SLAM2. In

sequences 3, 4, and 6, which are more difficult as there are plenty

of dynamic objects such as pedestrians and vehicles, our algorithm

shows a greater advantage than ORB‐SLAM2. In addition, under poor

illumination conditions, the performance of ORB‐SLAM2 degrades

significantly. Sequences 3 and 4 are collected under poor illumination

conditions, and both of them contain many dynamic objects. On these

two sequences, our proposed algorithm performs much better than

the ORB‐SLAM2. Figure 18 shows the estimated trajectories on our

own data sets with the aid of prior LiDAR map constructed on the

same sequence.

5.4.2 | Different prior map reuse comparisons over
out‐run LiDAR map

We also test the system using the LiDAR map built on other

sequences collected in the same scene, to evaluate whether a prior

LiDAR map is still useful for the online visual localization after a

period of time and with changes to the environment. We randomly

select sequence 5 to construct a prior map for sequence 1, 2, 3, and

5, in scene A and select sequence 6 to construct a prior map for

sequence 4 and 6, in scene B. Figure 16 shows the prior LiDAR map

constructed on sequence 5 and sequence 6 in scene A and B,

respectively.

Besides the proposed method, we will also test another two

map reuse system: online visual localization aided by a prior visual

feature map, and online LiDAR localization over a PLM. To reuse

the sparse visual feature map, we modify the original ORB‐SLAM2

to add the capabilities of map saving and loading. After running

ORB‐SLAM2 online, we save the constructed visual feature map in

a binary file, which contains the following data: the poses of

keyframes, ORB features with positions and descriptors, and the

observation relationships between the visual features and

F IGURE 14 The trajectory estimates (in green) on the whole
Urban 28 sequence (11.47 km) and the ground truth (in red). There
are in total four restarts along the whole trajectory. The restart

positions are marked by magenta hexagon [Color figure can be
viewed at wileyonlinelibrary.com]

F IGURE 15 Sensors setup on our wheeled robot [Color figure
can be viewed at wileyonlinelibrary.com]
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keyframes. To construct a good visual feature map, we perform a

final great adjustment including a pose graph optimization that

corrects all the keyframe poses with the ground truth, and the

sequent global bundle adjustment. After the final adjustment, the

poses of keyframes are nearly identical to the ground truth, hence

we regard this adjusted visual feature map to be accurate enough.

Same as the prior LiDAR map, we also use a prior visual map

created by sequence 5 for scene A for online localization, and a

prior visual feature map created by sequence 6 for scene B. In

online real‐time visual localization, after loading the visual feature

map into ORB‐SLAM2, we enable the relocation mode of the

system. Under this model, the system only estimates the poses of

keyframes, but local mapping for feature map reconstruction is

prohibited. The sizes of prior visual feature map (binary file) for

scene A and B are 119.7MB and 411.0 MB, respectively. And the

sizes of prior LiDAR point cloud map (pcd file) for scene A and B are

6.7 MB and 14.2 MB, respectively. It should be noted that we do

not need a dense PLM, and the PLM used in our system has been

downsampled by a voxel grid filter with a resolution of 0.2 m. The

voxel grid filter is from PCL (Point Cloud Library, 2018). As the

LiDAR map only stores the 3D positions of the points, its size is

much smaller than the visual feature map. We also perform online

LiDAR localization in the LiDAR map. Online LiDAR localization is

carried out by matching online LiDAR scans to map by the standard

P2D‐NDT, and the LiDAR map is the same map used in aided online

visual localization.

The experimental results of different types of map reuse systems

are shown in Table 7. The proposed system performs better than the

online visual localization with the aid of a prior visual feature map. As

the bird's‐eye view shown in Figure 16, the routes when the robot

F IGURE 16 Bird’s‐eye views of our own data sets, including scene A and B, and the trajectories are also displayed. The prior LiDAR maps of both
scenes are constructed on sequences 5 and 6. For clarity, we remove the ground points in both LiDAR maps. (a) A bird’s‐eye view of scene A; (b) A
bird’s‐eye view of scene B; (c) Prior LiDAR map of scene A; and (d) Prior LiDAR map of scene B [Color figure can be viewed at wileyonlinelibrary.com]
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builds up the prior map have obvious deviations from the routes of

online visual localization. The PLM can still improve the accuracy of the

online visual localization. As for visual localization aided by accurate

visual feature map, online visual localization in the clockwise sequence 2

fails to reuse the visual feature map created by the counterclockwise

sequence 5. Meanwhile, the LiDAR map is able to provide substantial

help in this case of the reverse directions. Furthermore, we can see that

improvements occur on sequences 1, 3, 4, 5, 6 with the aid of prior

visual feature map on sequence 5, 6. However, the accuracy is only

improved slightly, even on sequences 5, 6, both of which use the prior

visual feature map built on their own.

It is worth noting that the visual localization on one sequence

with the prior LiDAR map created by the same sequence (in

Table 6) and with the prior LiDAR map created by another

09:18

09:32

Seq 1

Seq 2

18:38Seq 5

18:16Seq 3

17:48Seq 4

18:09Seq 6

(a)

(b)

F IGURE 17 Snapshots of our own data sets collected in two different scenes. Different sequences are collected at different time and under
various weather conditions [Color figure can be viewed at wileyonlinelibrary.com]

TABLE 5 Details about our own data sets

Sequence Date Time Scene Illumination Weather Dynamic objects Direction Length (m)

1 June 1 9:18 A Day Sunny Few Counterclockwise 341.990

2 June 1 9:32 A Day Sunny Few Clockwise 325.425

3 June 5 18:16 A Dusk After rain Many Counterclockwise 361.765

4 June 5 18:38 B Dusk After rain Many Clockwise 777.568

5 June 12 17:48 A Dusk Cloudy Several Counterclockwise 406.877

6 June 12 18:09 B Dusk Cloudy Many Clockwise 742.766

TABLE 6 RMSE on ZJU data set (over In‐run prior LiDAR map)

Proposed ORB‐SLAM2

Mean (m) Mean/Traj (%) Max (m) Min (m) Mean (m) Mean/Traj (%) Max (m) Min (m)

Sequence 1 0.5111 0.1494 0.5314 0.4777 0.9130 0.2670 0.9804 0.8474

Sequence 2 0.5238 0.1610 0.5466 0.5011 1.3245 0.4070 1.3936 1.2136

Sequence 3 0.2513 0.06946 0.2782 0.2314 1.3525 0.3739 1.3898 1.3304

Sequence 4 0.8181 0.1052 1.2998 0.5278 2.5547 0.3286 2.6900 2.4391

Sequence 5 0.2771 0.06811 0.3218 0.1994 0.7044 0.1731 0.7170 0.6916

Sequence 6 0.8093 0.1090 0.8989 0.5128 1.8210 0.2452 1.8903 1.7390
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sequence (in Table 7) have similar performances. This implies that

the visual localization aided by the PLM is robust and suitable for

somehow long‐term usage. In Table 7, LiDAR NDT denotes the

online LiDAR localization with the aid of prior LiDAR map by

the conventional P2D‐NDT, and it has a better and much more

consistent performance than our proposed visual online localiza-

tion, due to the accurate metric measurements of LiDAR. ATE in

one typical run of the 6 runs, during the whole trajectory, is shown

in Figure 19.

5.5 | Evaluation of ProW‐NDT and visual feature
refinement

We will demonstrate the advantages of the proposed ProW‐NDT

and the sparse visual feature refinement by the prior LiDAR map.

The ablation experiments are performed on both the Gazebo

simulated data set and the KITTI data set, both of which provide

fairly accurate ground truth. We set up three different configura-

tions for the proposed system as shown in Table 8 and Table 9. In
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F IGURE 18 Trajectories estimated on our own data sets, shown in the camera frame. The proposed method is with the aid of in‐run prior
LiDAR map. Red solid line indicates the ground truth. Black dot‐dash is estimated by ORB‐SLAM2, and the blue dash is got from our proposed
method. (a) On sequence 1; (b) On sequence 2; (c) On sequence 3; (d) On sequence 4; (e) On sequence 5; and (f) On sequence 6 [Color figure can

be viewed at wileyonlinelibrary.com]

TABLE 7 Three map reuse systems: RMSE on ZJU data set (over out‐run prior LiDAR map)

Proposed ORB‐SLAM2 LiDAR NDT

Mean (m)

Mean/

Traj (%) Max (m) Min (m) Mean (m)

Mean/

Traj (%) Max (m) Min (m) Mean (m)

Mean/

Traj (%) Max (m) Min (m)

Sequence 1 0.4746 0.1388 0.4855 0.4561 0.6515 0.1905 0.6529 0.6505 0.3861 0.1129 0.3866 0.3859

Sequence 2 0.6234 0.1916 0.6531 0.5919 FAIL 0.5450 0.1675 0.5463 0.5442

Sequence 3 0.7620 0.2106 0.7978 0.7086 1.1698 0.3234 1.1701 1.1696 0.6719 0.1857 0.6724 0.6713

Sequence 4 1.4874 0.1913 2.0561 0.6578 1.8183 0.2338 1.9289 1.7449 0.4264 0.05483 0.4270 0.4253

Sequence 5 0.2771 0.06811 0.3218 0.1994 0.6880 0.1691 0.6899 0.6808 0.1617 0.03975 0.1622 0.1614

Sequence 6 0.8093 0.1090 0.8988 0.5128 1.6937 0.2280 1.7016 1.6897 0.6388 0.08600 0.6392 0.637
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both tables, Normal NDT Only denotes that the registration method

used in our framework is the conventional P2D‐NDT, which sets

the same outlier ratio 0.6 to every point in the source point cloud,

and the surfel based sparse feature refinement is abandoned;

ProW‐NDT Only denotes that ProW‐NDT (see Section 4.2) is used

for registration, while the surfel based feature refinement is still

abandoned; Full System represents that ProW‐NDT is used for

registration and the surfel based sparse feature refinement is

conducted. On the Gazebo simulated data set, we find that when

the disturbance is relatively small, the ProW‐NDT shows a clear

advantage over the conventional P2D‐NDT. When the disturbance

becomes large, surfel based refinement can significantly improve

the performance of our system. On the KITTI data set, we find that

the effectiveness of surfel based refinement is significant on some

sequences. It can be seen that our localization system becomes

more stable with the surfel based refinement for the visual

features.

5.6 | Computational cost

Lastly, we show the computational cost of the proposed real‐time

multimodal visual localization system, by counting the averaged

CPU runtime spent on the main stages of our approach in Table 10,

when running the proposed approach on all sequences (00–10)

KITTI data set. In this table, Visual Tracking denotes the time

consumption for feature extraction and tracking in the visual

tracking thread. Recovery of KF Depth is the time consumption of

both getting the depth and recovering 3D point cloud from one

keyframe with a stereo image pair; Visual Semi‐dense Reconstruction

is the time spent on assembling point cloud reconstructed from

multiple keyframes into one local semidense visual point cloud.

ProW‐NDT is the time spent on registering the local visual point

cloud to the prior LiDAR map. Local BA and Surfel Refinement is the

time spent for local bundle adjustment and 3D visual feature

refinement by surfels; Pose Graph Optimization is the time spent on

F IGURE 19 Norm of ATE, during the whole trajectory of one typical run, got from three types of map reuse system on our data set: the
proposed online visual localization aided by prior LiDAR map (Proposed), the online visual localization aided by prior visual feature map
(ORB_SLAM2), the online LiDAR map aided by prior LiDAR map (Lidar NDT). As online visual localization aided by prior visual feature map fails on

sequence 2, it’s set blank. (a) On sequence 1; (b) On sequence 2; (c) On sequence 3; (d) On sequence 4; (e) On sequence 5; and (f) On sequence 6
[Color figure can be viewed at wileyonlinelibrary.com]

TABLE 8 Ablation experiments on Gazebo data set

Noise
level

Normal NDT only ProW‐NDT only Full system

Mean (m)
Mean/
Traj (%) Max (m) Min (m) Mean (m)

Mean/
Traj (%) Max (m) Min (m) Mean (m)

Mean/
Traj (%) Max (m) Min (m)

5 0.4411 0.1498 0.4606 0.4226 0.4102 0.1393 0.4675 0.3641 0.3962 0.1345 0.4150 0.3751

10 0.8447 0.2868 0.9129 0.7711 0.8505 0.2888 0.8870 0.7865 0.8338 0.2831 0.8649 0.7508

15 1.3389 0.4546 1.4172 1.2492 1.3160 0.4468 1.3765 1.2343 1.2249 0.4159 1.3265 1.1019
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fusing the registration result by a pose graph optimization. It

should be noted that since the proposed system is in a multithread

framework, the visual tracking processes the raw image measure-

ments in real‐time at a high frequency, and the other operations

are only needed to be executed at a lower frequency in the other

threads. This mechanism achieves a balance between accuracy and

time consumption.

6 | CONCLUSIONS AND FUTURE WORK

We have developed a real‐time stereo visual localization system

that can efficiently utilize the prior LiDAR point cloud map. In

particular, the proposed approach constructs both a sparse visual

feature map and a semidense visual point cloud map. The former is

used for visual tracking and will be refined based on structure

constraints enforced by surfels extracted from the LiDAR map; the

latter is registered to the LiDAR map with the ProW‐NDT approach

that weighs each point in the source point cloud based on its

uncertainty. Pose graph optimization is used to fuse the registration

and VO results. We have extensively validated the proposed system

on both simulated and real‐world data sets and shown that the

proposed approach is able to provide accurate 6D pose estimates in

real‐time without the support of GPU. In the future, we will

investigate improving this system by fusing IMU, GPS, and wheel

odometer measurements.
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