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Abstract— Multi-sensor fusion of multi-modal measurements
from commodity inertial, visual and LiDAR sensors to provide
robust and accurate 6DOF pose estimation holds great potential
in robotics and beyond. In this paper, building upon our
prior work (i.e., LIC-Fusion), we develop a sliding-window
filter based LiDAR-Inertial-Camera odometry with online spa-
tiotemporal calibration (i.e., LIC-Fusion 2.0), which introduces
a novel sliding-window plane-feature tracking for efficiently
processing 3D LiDAR point clouds. In particular, after motion
compensation for LiDAR points by leveraging IMU data, low-
curvature planar points are extracted and tracked across the
sliding window. A novel outlier rejection criteria is proposed
in the plane-feature tracking for high quality data association.
Only the tracked planar points belonging to the same plane
will be used for plane initialization, which makes the plane
extraction efficient and robust. Moreover, we perform the
observability analysis for the IMU-LiDAR subsystem under
consideration and report the degenerate cases for spatiotem-
poral calibration using plane features. While the estimation
consistency and identified degenerate motions are validated
in Monte-Carlo simulations, different real-world experiments
are also conducted to show that the proposed LIC-Fusion 2.0
outperforms its predecessor and other state-of-the-art methods.

I. INTRODUCTION AND RELATED WORK

Accurate and robust 3D localization is essential for au-
tonomous robots to perform high-level tasks such as au-
tonomous driving, inspection, and delivery. LiDAR, camera,
and Inertial Measurements Unit (IMU) are among the most
popular sensor choices for 3D pose estimation [1–5]. Since
each sensor modality has its own virtues and inherent short-
comings, a proper multi-sensor fusion algorithm aiming at
leveraging the “best” of each sensor modality is expected to
have a substantial performance gain in both estimation ac-
curacy and robustness. For this reason, Zhang and Singh [1]
proposed a graph optimization based laser-visual-inertial
localization and mapping method following a multilayer
processing pipeline, in which the IMU data for prediction,
a visual-inertial coupled estimator for motion estimation,
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Fig. 1: The proposed LIC-Fusion 2.0 with sliding-window plane-feature
tracking. The stably tracked SLAM plane landmarks from the LiDAR and
SLAM point landmarks from the camera are colored in red. High curvature
LiDAR points in blue, which are accumulated from a series of LiDAR
scans, are shown for visualizing the surroundings only. Magenta points are
extracted planar points from the latest LiDAR scan. The estimated trajectory
is marked in green.

and LiDAR based scan matching is integrated to further
improve the motion estimation and reconstruct the map. In
contrast to [1], our prior LIC-Fusion [5] follows a lightweight
filtering pipeline, which also enables spatial and temporal
calibrations between the un-synchronized sensors. In [2], a
depth association algorithm for visual features from LiDAR
measurements is developed, which is particularly suitable for
autonomous driving scenarios. Shao et al. [4] fused stereo
visual-inertial odometry and LiDAR scan matching within a
graph optimization framework, in which, after detecting loop
closures from images, iterative closet point (ICP) of LiDAR
data is performed to find the loop closure constraints.

Substantial research efforts have been devoted on pro-
cessing 3D LiDAR measurements to find the relative pose
between two LiDAR scans. To achieve this, ICP [6] is among
the most widely used algorithms to compute the relative
motion from two point clouds. However, traditional ICP can
easily get poor results when applied on registering two 3D
LiDAR scans, which have vertical sparsity and ring structure.
To cope with the sparsity in LiDAR scans, in [7], raw LiDAR
points are converted into line segments, and the closest points
from two line segments are minimized iteratively. Similarly,
in the well-known LOAM algorithm [8], the registration of
LiDAR scans leverage the implicit geometrical constraints
(point-to-plane and point-to-line distance) to perform “fea-
ture” based ICP. This algorithm is more robust and efficient
since only a few selected points with high/low curvatures
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are processed. However, both ICP and LOAM provide con-
straints only between two consecutive scans, and it is hard to
accurately model the relative pose uncertainty. An alternative
approach is to directly extract features (e.g., planes) and
construct a feature-based SLAM problem [9]. However, not
only is large-scale plane extraction often computationally
intensive, but plane-feature data association (e.g., based on
Mahalanobis distance test) needs ad-hoc parameter tuning in
cluttered environments.

To address these issues, building upon our prior work of
LIC-fusion 1.0, we propose a novel plane-feature tracking
algorithm to efficiently process the LiDAR measurements
and then optimally integrated it into a sliding-window filter-
based multi-sensor fusion framework (see the overview of the
system in Fig. 1). In particular, after removing the motion
distortion for LiDAR points, during the current sliding win-
dow, we only extract and track planar points associated with
certain planes. Only tracked planar points will be used for
plane feature initialization, which makes the plane extraction
more efficient and robust. While abundant of works exist on
observability analysis of visual-inertial systems with point
features [10, 11], we perform observability analysis for the
proposed lidar-inertial-visual system and identify degenerate
cases for online calibration with plane features. The main
contributions of this work can be summarized as follows:
• We develop a novel sliding-window plane-feature track-

ing algorithm that allows for tracking 3D environmental
plane features across multiple LiDAR scans within a
sliding-window. This tracking algorithm is optimally
integrated into our prior tightly-coupled fusion frame-
work: LIC-Fusion [5]. For the proposed plane tracking,
a novel outliers rejection criterion is advocated, which
allows for robust matching by taking account of the
transformation uncertainty between LiDAR frames. The
system can model the uncertainties of LiDAR measure-
ments reasonably, which eliminates the inconsistent-
prone ICP for LiDAR scan matching.

• We perform an in-depth observability analysis of the
LiDAR-inertial-camera system with plane features and
identify the degenerate cases that cause the system to
have additional unobservable directions.

• We conduct extensive experiments of the proposed LIC-
Fusion 2.0 on a series of Monte-Carlo simulations and
real-world datasets, which verifies both the consistency
and accuracy of the proposed system.

II. LIC-FUSION 2.0 PROBLEM FORMULATION

A. State Vector

In addition to LIC-Fusion’s [5] original state containing
IMU state xI , camera clones xC , LiDAR clones xL, and
spatial-temporal calibration of IMU-CAM xcalib C and IMU-
LiDAR xcalib L, we store environmental visual Gxf and
LiDAR landmarks Axπ . These features are “long lived” and
through frequent matching can limit estimation drift. The
state vector is:

x =
[
x>I x>calib C x>calib L x>C x>L

Gx>f
Ax>π

]>
(1)

where

xI =
[
Ik
G q̄
> b>g

Gv>Ik b>a
Gp>Ik

]>
(2)

xcalib C =
[
C
I q̄
> Cp>I tdC

]>
(3)

xcalib L =
[
L
I q̄
> Lp>I tdL

]>
(4)

xC =
[
Ic0
G q̄> Gp>Ic0

· · ·
Icm−1

G q̄> Gp>Icm−1

]>
(5)

xL =
[
Il0
G q̄> Gp>Il0

· · ·
Iln−1

G q̄> Gp>Iln−1

]>
(6)

Gxf =
[
Gp>f0

Gp>f1 · · ·
Gp>fg−1

]>
(7)

Axπ =
[
Ap>π0

Ap>π1
· · · Ap>πh−1

]>
(8)

In the above, {Ik} is the local IMU frame at time instant tk.
Ik
G q̄ is a unit quaternion in JPL format [12], which represents
3D rotation Ik

G R from {G} to {Ik}. GvIk , GpIk denotes
the velocity and position of IMU in {G}. Moreover, bg
and ba are the gyro and accelerator biases that corrupt
the IMU measurements respectively. The system error state
for x is defined as x̃ = x − x̂ where x̂ is the current
estimate1. For details on the calibration parameters please
see the original LIC-Fusion paper [5]. Additionally, we
include environmental visual features, Gpf , represented in
the global frame of reference, and store environmental plane
features represented in an anchored frame {A}. The plane
is represented by the closest point [9, 13], and the anchored
representation can avoid the singularity when the norm of
Gpπ approaches zero. These long-lived planar features will
be tracked in incoming LiDAR scans using the proposed
tracking algorithm until they are lost.

B. Point-to-Plane Measurement Model

Considering a LiDAR planar point measurement, Lpf , that
is sampled on the plane Apπ . We can define the point-to-
plane distance measurement model:

zπ =
Lp>π∥∥Lpπ

∥∥ (Lpf − nf )−
∥∥∥Lpπ

∥∥∥ (9)

where nf ∼ N (0, σ2
fI3). With a slight abuse of notation, by

defining Ld =
∥∥Lpπ

∥∥ and Ln = Lpπ/
∥∥Lpπ

∥∥, a plane Apπ
can be transformed into the local frame by:[

Ln
Ld

]
=

[
L
AR 0
−Ap>L 1

] [
An
Ad

]
(10)

C. LiDAR Plane Feature Update

Analogous to point features [14], we divide all the tracked
plane features from the LiDAR pointclouds into “MSCKF”
and “SLAM” based on the track length. Note that the sliding-
window-based plane tracking will be explained in detail in
Section III-B. Given a series of LiDAR point measurements
collected over the whole sliding window of the plane feature

1x̃ holds for velocity, position, bias, except for the quaternion, which fol-
lows: q̄ ' [ 1

2
δθ> 1]>⊗ ˆ̄q, where ⊗ denotes quaternion multiplication [12],

and δθ is the corresponding error state.
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Apπj , we can linearize the measurement z
(j)
f in Eq. (9) at

current estimates of Apπj and the states x as:

r
(j)
f = 0− z

(j)
f ' H(j)

x x̃ + H(j)
π
Ap̃πj + H(j)

n n
(j)
f (11)

where n
(j)
f denotes the stacked noise vector. H

(j)
x , H

(j)
π and

H
(j)
n are the stacked Jacobians with respect to pose states,

the plane landmark and the measurement noise, respectively.
Analytical forms of H

(j)
x ,H

(j)
π ,H

(j)
n can be found out in our

companion technical report [15].
If Apπj is a MSCKF plane landmark, the nullspace

operation [16] is performed to remove the dependency on
Apπj by projection onto the left nullspace N:

N>r
(j)
f = N>H(j)

x x̃ + N>H(j)
π
Ap̃πj + N>H(j)

n n
(j)
f (12)

⇒ r
(j)
fo = H(j)

xo x̃ + n(j)
o (13)

Due to the special structure that H
(j)
n H

(j)
n
> = In the mea-

surement covariance is still isotropic and thus the nullspace
operation is valid (i.e. σ2

fN
>H

(j)
n H

(j)
n
>N = σ2

fIn). By
stacking the residuals and Jacobians of all MSCKF plane
landmarks, we obtain:

rfo = Hxox̃ + no (14)

This stacked system can then update the state and covariance
using the standard EKF update equations.

If Apπj is a SLAM plane landmark that already exists in
the state, we can directly update its estimate and the state
using Eq. (11). To determine whether a plane feature with
a long track length should be initialized into the state as
a SLAM feature, we note that planes constrain the current
state estimate based on their normals. In the case that three
planes that are not parallel to each other are observed,
then the current state estimate can be well constrained
[17]. Thus, we opt to insert “informative” planes whose
normal directions are significantly different from the planes
currently being estimated (in our implementation, we only
insert planes whose normal directions have greater than ten
degrees difference). After augmenting a plane feature into
the state vector, future LiDAR scans can also match to it.

III. SLIDING-WINDOW LIDAR PLANE TRACKING

A. Motion Compensation for Raw LiDAR Points

Since the raw LiDAR points are deteriorated by motion
distortion, we can remove the distortion by utilizing the high-
frequency IMU pose estimation. When propagating IMU
state, we save the propagated IMU poses at each timestep
into a buffer, which can then be used to remove the distortion.
Since LiDAR points occur at a higher frequency than IMU,
we perform linear interpolate between each of these buffered
poses to the corresponding time of each LiDAR ray. For
orientation, we perform SO(3) interpolation similar to [18],
while linear interpolate between the two positions. Using this
pose, we transform all 3D points into the pose at the sweep
start time, eliminating the motion distortion.

Fig. 2: A plane landmark tracked across multiple LiDAR frames
{L0, L1, L2, L3, · · · } within a sliding window. A planar point in the last
LiDAR scan is associated with a triangle consisting of three planar points
in its subsequent LiDAR scan. All the tracked planar points are assumed to
be sampled from the same plane landmark.

B. Planar Landmark Tracking

We now explain how we perform temporal planar feature
tracking across sequential undistorted LiDAR scans. We
first extract planar points from each LiDAR scan using the
method proposed in [8], where low-curvature points are
classified as being on some environmental planar surface.
A planar point indexed by i in LiDAR frame {La} will be
tracked in the latest LiDAR frame {Lb} by finding its nearest
neighbour point j after projection into {Lb}. We then find
another two points (indexed by k, l), which are the nearest
points to j on the same scan ring and the adjacent scan rings,
respectively. These three points (j, k, l) are guaranteed to
be non-collinear and form a planar patch corresponding to
planar point i. If the distance between the projected i and j or
distances between any two points ∈ {j, k, l} are larger than a
given threshold, we will reject to associate i to (j, k, l), and
thus lose track of this planar LiDAR feature. An overview
of this approach is shown in Algorithm 1 and an additional
outlier rejection scheme is presented in the following section.
To prevent the reuse of information, we employ a simple
strategy that a planar point can only be matched to a single
common plane feature.

Algorithm 1 LiDAR Plane Tracking Procedure

Extract planar points from {Lb}
Project prior planar points from {La} into {Lb}, find the
nearest corresponding point to each in {Lb}.
for all (pi,pj) ∈ projected plane points do

Find two closest points pk, pl in {Lb}
Ensure pk scan ring is the same
Ensure pl scan rings is the adjacent
Ensure that selected points are not already used
if |pn − pm| < d ∀(n,m) ∈ (i, j, k, l) then

Compute plane normal bn2 transformed into {La}
Compute measurement covariance matrix Pπn

if χ2(zn,H,Pπn) == Pass then
pj ,pk,pl are measurements of pi’s plane
pj ,pk,pl will be tracked into the next scan

end if
end if

end for
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C. Normal-based Plane Data Association

We now discuss our novel plane normal-based data associ-
ation method, which rejects invalid plane associations based
on the calculated plane normal. Consider the case that we
have extracted a plane on the floor next to a vertical wall.
If the tracking algorithm discussed in the previous section
is used, then points that are near the bottom of the wall
would be classified as being on the same plane as floor points
due to purely relying on 3D distance. This can have huge
implications on the estimation accuracy due to incorrectly
saying that the wall and floor are the same plane even though
their normal directions should be perpendicular to each other.

To handle this, we propose leveraging the current state
uncertainty and the uncertainty of the planar points to per-
form a Mahalanobis distance test between the normal vectors
of the candidate match. Specifically, we have a possible
planar match of the points, (Lapfm,

Lapfn,
Lapfo) in frame

{La}, and (Lbpfg,
Lbpfh,

Lbpfi) in frame {Lb}. We define
a synthetic measurement zn reflecting the “parallelarity”
between the two normal vectors of each of these planes as:

zn = bLan1cLaLbR
Lbn2 (15)

Lan1 = bLapfn − Lapfmc(Lapfo − Lapfm) (16)
Lbn2 = bLbpfh − Lbpfgc(Lbpfi − Lnpg) (17)

We can define two simplified stacked “states” as:

pn1 =
[
Lap>fm

Lap>fn
Lap>fo

]>
(18)

pn2 =
[
Lbp>fg

Lbp>fh
Lbp>fi

]>
(19)

The corresponding covariances of pn1 and pn2 can be
computed from LiDAR points noises and denoted as Pn1 =
Pn2 = σ2

fIpn1
. The Mahalanobis distance dz of zn can be

computed as:

dz = z>nP−1πnzn (20a)

Pπn =
∂z̃n
∂p̃n1

Pn1

(
∂z̃n
∂p̃n1

)>
+

∂z̃n
∂p̃n2

Pn2

(
∂z̃n
∂p̃n2

)>
+

∂z̃n

∂LaLb δθ
Pori

(
∂z̃n

∂LaLb δθ

)>
(20b)

where Pori is the known covariance of relative rotation La
Lb

R
based on the current EKF covariance and the Jacobians:

∂z̃n
∂p̃n1

= −bLaLbR
Lbn2c

∂La ñ1

∂p̃n1
(21a)

∂z̃n
∂p̃n2

= bLan1cLaLbR
∂Lb ñ2

∂p̃n2
(21b)

Based on the Mahalanobis distance test, we can reject
incorrect temporal planar tracks. Note that, this check can
only be performed once we have more than two sequential
LiDAR frames, see Fig. 2 for illustrating the measurements
on the same plane while across multiple LiDAR frames.

D. Planar Landmark Initialization

If a plane landmark Lapπj can be tracked across several
LiDAR frames, we will initialize this plane landmark in the
oldest LiDAR frame {La} with all its valid planar point

observations, denoted as set Pfj , within the sliding window.
A planar point observation Lxp

(j)
fmi

= Lxp
(j)
fi

+ n
(j)
fi

is the
ith measurement in Pfj , with n

(j)
fi

is the measurement noise.
We compute the distance between Lxp

(j)
fi

and Lapπj as:

z
(j)
fi

=
Lap>πj∥∥Lapπj∥∥

(
La
Lx

R
(
Lxp

(j)
fmi
−n

(j)
fi

)
+LapLx

)
−
∥∥∥Lapπj∥∥∥ (22)

By stacking Eq. (22) and constructing a linear system,
we can compute the initial guess for plane normal vector
La p̂πj/||La p̂πj || and plane distance scalar ||La p̂πj ||. The
initial guess of the plane landmark can be further refined
by minimizing following cost function:

Lap∗πj = arg min
Lapπj

n∑
i=1

∥∥∥z̃(j)fi ∥∥∥2I

σ2
f

(23)

where n is the amount of observations in Pfj . The entire
proposed LIC-Fusion 2.0 LiDAR processing pipeline can be
seen in Algorithm 2.

IV. OBSERVABILITY ANALYSIS

The observability analysis of IMU-CAM navigation sys-
tem with online calibration has been studied extensively in
literature [10, 11, 19], however, the analysis for IMU-LiDAR
navigation with online calibration using plane features is still
missing. In addition, since the calibration between IMU-
CAM and IMU-LiDAR calibration are relatively indepen-
dent, previously identified degenerate motions for VINS
calibration cannot be directly applied to IMU-LiDAR cases
with plane features. Hence, in this paper, we focus on the
subsystem of LIC-Fusion 2.0 with IMU-LiDAR only and
study specifically the degenerate cases for online spatial-
temporal IMU-LiDAR calibration using plane features. In
particular, the observability matrix M(x) is given by:

M(x) =

[(
Hx,1Φ(1,1)

)>
. . .
(
Hx,kΦ(k,1)

)>]>
(24)

where Hx,k represents the measurement Jacobians at time-
step k. The right null space of M(x), denoted by N, indi-
cates the unobservable directions of the underlying system.

A. State Vector and State Transition Matrix
As in our previous work [11], we have already studied the

observability for IMU-CAM subsystem with online calibra-
tion and point features, this analysis will only focus on IMU-
LiDAR system with online calibration and plane features.
Hence, with closest point representation for plane feature, the
state vector with a plane feature and IMU-LiDAR calibration
can be written as:

x =
[
x>I x>calib L

Gp>π

]>
(25)

The state transition matrix can be written as:

Φ(k,1) =

 ΦI 015×7 015×3
07×15 Φcalib L 07×3
03×15 03×7 Φπ

 (26)

Where ΦI denotes the IMU state transition matrix [10].
Φcalib L = I7 and Φπ = I3. Note that without loss of
generality, we represent the plane feature in the global frame
{G}. We only consider one plane in our state vector, for the
more planes cases please refer to our technical report [15].
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Algorithm 2 LIC-Fusion 2.0 LiDAR Processing Pipeline

Propagation:
• Propagate the state forward in time by IMU measure-

ments
• Buffer propagated poses for LiDAR scan motion

compensation
Update: Given an incoming LiDAR Scan,
• Clone the corresponding IMU pose.
• Remove motion distortion for the scan as Sec. III-A
• Extract and track planar points as Sec. III-B.
• For SLAM plane landmarks, use the tracked planar

points to compute the residuals & measurement Jaco-
bians, and perform EKF update [Eq. (11)].

• For planar points that tracked across the sliding win-
dow or lost track in the current scan:
– Query its associated observations over the sliding

window.
– Check the association validity by Mahalanobis gat-

ing test as Sec. III-C.
– Construct the residual vectors and the Jacobians in

Eq. (22) with all the verified observations.
– Determine whether the plane landmark should be

a SLAM landmark by checking the track length
and the normal vector “parallelity” to the existing
SLAM plane landmarks.

– If it should be a SLAM plane, add it to the state
vector and augment the state covariance matrix.
Otherwise, treat it as a MSCKF feature.

• Stack the residuals and Jacobians of all MSCKF plane
landmarks, and perform EKF update [Eq. (14)]

Management of States:
• SLAM plane landmarks that have lost track are

marginalized out.
• SLAM plane landmarks anchored in the frame that

needs to be marginalized are moved to the newest
frame.

• Marginalize the cloned pose corresponding to the
oldest LiDAR frame in the sliding window state.

B. Measurement Jacobians and Observability Matrix

Following the observability methodology in [10], we con-
struct the k-th block of the observability matrix as:

Mk = Hπ

[
L
I RI

GR̂ 03×1
01×3 1

]
×[

Γπ11 03 03 Γπ14 03 Γπ16 03 Γπ18 Γπ19
Γπ21

Gn> Gn>∆tk Γπ24 Γπ25 Γπ26 Γπ27 Γπ28 Γπ29

]
where Γπij , i ∈ {1, 2}, j ∈ {1 . . . 9} can be found in [15].

For LiDAR aided INS, if the state vector contains IMU
state, spatial/temporal IMU-LiDAR calibration and a plane
feature, the system will have at least 7 unobservable direc-
tions as N(π).

N(π) =
[
N

(π)
1 N

(π)
2:4 N

(π)
5:6 N

(π)
7

]
(27)

=


I1
G R̂Gg 03 03×1 03×1

I1
G R̂Gn̂π

−bGp̂I1cGg GR̂π 03×1 03×1 03×1
−bGv̂I1cGg 03

Gn̂⊥1
Gn̂⊥2 03×1

013×1 013×3 013×1 013×1 013×1
−bGd̂πGn̂πcGg Gn̂πe>3 03×1 03×1 03×1


where GRπ =

[
Gn⊥1

Gn⊥2
Gn
]
. The N

(π)
1 relates to the

global yaw around the gravity direction, N
(π)
2:4 relate to the

aided INS sensor platform, N
(π)
5:6 relates to the velocity

parallel to the plane and N
(π)
7 relates to the rotation around

the plane normal direction.
Given 3D random motions, Γπ16, Γπ18, Γπ26, Γπ27 and

Γπ28 tend to have full column rank and make both the spatial
and temporal calibration between IMU-LiDAR observable.

C. Degenerate Cases Analysis for IMU-LiDAR Calibration

Given the IMU-LiDAR navigation system with plane fea-
tures, the online calibration will suffer from degenerate cases
that make the calibration parameters to be unobservable.
These degenerate cases can be affected by (1) plane structure
and (2) system motion. In this section, we will use one-
plane case with several degenerate motions to illustrate our
findings (see Table. I). Two-plane or three-plane cases will
be also included in our companion technique report. Note
that the one-plane case refers to the cases when there is
only one plane or all planes in the state vector are parallel.
We have identified the following degenerate motions for the
IMU-LiDAR calibration:

• If the system undergoes pure translation, the rigid
transformation (including orientation and translation)
between IMU-LiDAR will be unobservable with unob-
servable subspace as:

N
(π)
8:11 =


015×1 015×3

L
I RI1

GRGn 03

03×1
L
I RI1

GRGRπ

0 0
03×1 e>3

Gn

 (28)

• If rotating with the fixed axis as Lk, the translation be-
tween IMU-LiDAR is not observable along the rotation
axis with unobservable directions as N

(π)
12 . Note that if

the rotation axis is perpendicular to the plane direction,
we will have an extra unobservable direction N

(π)
13 .

N
(π)
12:13 =


03×1 03×1

I1
GRI

LRLk 03×1
012×1 012×1
Lk Lk

04×1 04×1

 (29)

• Similar to IMU-CAM calibration, if the system under-
goes motions with constant Iω and Iv or constant Iω
and Ga, the IMU-LiDAR temporal calibration will also
be unobservable with unobservable directions as N

(π)
14

and N
(π)
15 , respectively. In addition, for one-plane case,

we have an extra degenerate motion (Gω ‖ Gn and
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Gn ⊥ GvI ) for time offset as N
(π)
16 .

N
(π)
14:16 =



06×1 06×1 06×1
03×1

GaI 03×1
06×1 06×1 06×1
L
I RIω L

I RIω 03×1
−LI RIv 03×1 03×1
−1 −1 1

03×1 03×1 03×1


(30)

It can be seen that many of these degenerate motions
for IMU-LiDAR coincide with the results of IMU-CAM
calibration a few with additional directions. Pure translation
will cause both the orientation and translation of IMU-
LiDAR extrinsic calibration unobservable, whereas for IMU-
CAM calibration just the translation is unobservable. In ad-
dition, one-plane case will also introduce extra unobservable
directions, such as tdL, if Gω ‖ Gn and Gn ⊥ Gv. Note that
any combination shown in Table I would also be degenerate.

TABLE I: Summary of degenerate motions for IMU-LiDAR calibration with
one-plane feature.

One Plane / Parallel Planes Unobservable

Pure Translation L
I R, LpI

1-axis Rotation LpI along rotation axis
Constant Iω and Iv tdL, LpI

Constant Iω and Ga tdL, LpI
Gω ‖ Gn and Gn ⊥ Gv tdL

V. SIMULATION RESULTS

We first verify our proposed system and observability
analysis in simulation. A virtual room with structural planes
(Fig. 3) is simulated [20, 21]. IMU measurements, LiDAR
points, sparse image features, perturbation to the initial
states, and noises to measurements are generated according
to configuration shown in Table II. We first evaluate the pro-
posed system with and without online IMU-LiDAR calibra-
tion by 12 Monte-Carlo runs, where absolute trajectory error
(ATE) and Normalized Estimation Error Squared (NEES) are
used to quantify accuracy and consistency, respectively.

The results are shown in Table III, where the “true” de-
notes the system starts with ground truth calibration param-
eters, while the “bad” indicates the system is initialized with

TABLE II: Simulation setup parameters.

Parameter Value Parameter Value

Cam Freq. (hz) 10 IMU Freq. (hz) 200
LiDAR Freq. (hz) 7 LiDAR Point Noise (m) 0.03
Gyro. White Noise 1.6968e-04 Gyro. Rand. Walk 1.9393e-05
Accel. White Noise 2.0000e-3 Accel. Rand. Walk 3.0000e-3

Pixel Proj. (px) 1 Timeoff (s) 0.01
Rot. LtoI (rad) 0.001 Pos. IinL (m) 0.01

Max Num. SLAM Point 12 Max Num. SLAM Plane 8
Num. Clones Image 11 Num. Clones LiDAR 8

TABLE III: Averaged ATE and NEES over 12 simulation runs with and
without online calibration. Note that “true” means ground truth calibration
while “bad” means the perturbed calibration and IC refers to IMU-camera
subsystem only.

IMU Model ATE (deg) ATE (m) Ori. NEES Pos. NEES

true w/ calib 0.118 0.020 2.210 0.185
bad w/ calib 0.129 0.021 2.216 0.221
bad w/o calib 0.148 0.024 2.677 0.246
true w/o calib 0.122 0.021 2.233 0.208

IC true w/o calib 0.159 0.027 2.237 0.314

TABLE IV: Parameters used in our real world experiments.

Parameter Value Parameter Value

Cam Freq. (hz) 20 IMU Freq. (hz) 400
LiDAR Freq. (hz) 10 Image Res. (px) 1920×1200

Num. Clones Image 11 Num. Clones LiDAR 8
Max Num. SLAM Point 20 Max Num. SLAM Plane 8

perturbed calibration. The results suggest that the proposed
system with online calibration can achieve consistent and
accurate pose estimation. In comparison, the system will
output inconsistent pose estimation (much larger ATE and
NEES) if it starts from perturbed initial states and runs
without online calibration. Furthermore, LIC-Fusion 2.0 also
outperforms its IMU-CAM (IC) subsystem (which only fuses
IMU and camera measurements). During simulation, 14.61
MSCKF plane landmarks and 1.60 SLAM plane landmarks
are used for update on average every scan.

We further examine a degenerate motion (1-axis rotation
motion) identified for online IMU-LiDAR calibration. With
the same trajectory shown in Fig. 3, we remove orientation
roll and pitch changes allowing only the yaw to change.
The spatial-temporal calibration between LiDAR-IMU over
6 runs with online calibration are shown in Fig. 3. All cali-
bration parameters except the z component of LpI converge
nicely with shrunken uncertainty bounds. Because the sensor
is rotating around z-axis (yaw only orientation), hence, the
z-component of LpI is observable. Therefore, the results
support our degenerate motion analysis, see Table I.

VI. REAL-WORLD EXPERIMENTAL RESULTS

We further validate the proposed LIC-Fusion 2.0. using our
own multi-sensor platform that consists of a Velodyne VLP-
16, an Xsens IMU, and a global-shutter monocular camera
(see Fig. 4). All sensors publish asynchronously, with all time
offsets estimated online with the zero as the initial guesses.
The image processing pipeline is based on our prior work
OpenVINS [21], while the LiDAR processing pipeline is
proposed in this work. Note that IMU is necessary as the
base sensor while, by design, the LiDAR and camera can
be turned on/off without affecting performance. Videos are
recorded when generating experimental results2.

A. Teaching Building Sequences

The proposed system is first evaluated on data (Fig. 4 and
Table IV) collected within a teaching building at Zhejiang
University. Since we started and ended in the same position
when collecting data, the start-to-end drift (supposed to be
zero) is used for system performance evaluation (see Fig. 5).
The averaged start and end errors of 5 runs tested on 7
sequences are shown in Table V. In the experiments, we com-
pare the proposed plane landmarks enhanced LiDAR-IMU-
CAM odometry (LIC-Fusion 2.0) with its subsystems (IMU-
CAM system: OpenVINS, LiDAR-IMU system: Proposed-
LI) and the other state-of-the-art algorithms, such as the
LiDAR odometry, (LOAM [8]), the tightly-coupled LiDAR-
Inertial odometry and mapping method (LIO-MAP [22]), and

2 https://www.youtube.com/watch?v=waE5nepxD-Q,
https://drive.google.com/open?id=1cLczzQVpsgtRQhuCX
AHOO563gFJSZckX
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Fig. 3: Left: the simulated room with structure planes (blue), 16-beam LiDAR points (yellow), SLAM point landmarks (red dot), SLAM plane landmarks
(red patch), estimated (green) and ground truth (cyan) trajectories. Middle and right: calibration errors and 3 sigma bounds for 6 typical runs with different
initial state perturbations for 1-axis rotation motion (yaw only). z-component of LpI is not observable and does not converge at all.

}{L

}{C

}{I

Fig. 4: Left: Sensor suite with a Velodyne VPL-16, Xsens IMU, and a monocular camera. Middle: Snapshots of Teaching Building sequences. Right:
Snapshots of Vicon Room sequences.

our prior work (LIC-Fusion [5]). Due to aggressive motion,
degraded structures, lighting changes, some algorithms fail
to work on certain sequences. In the Table V, we omit severe
failures marked by “-” when the norm of final drift is larger
than 30 meters. In Seq 1, the camera-based OpenVINS fails
to track visual features due to huge camera exposure changes
when we go upstairs under poor lighting conditions. The
proposed-LI subsystem has a larger drift on Seq 3 and Seq
6, in which the sensor suite traversed long corridors with
only parallel planes observed. LIO-MAP also fails on Seq
3 with long corridors even with a maintained global map.
In general, compared to other algorithms, the proposed LIC-
Fusion 2.0 is more robust and can achieve higher accuracy
on most sequences. Note that in a typical indoor scenario
of Seq 5, there are 18.81 MSCKF planes and 2.09 SLAM
planes used for the update on average.

B. Vicon Room Sequences

Data sequences collected within a VICON are also used
for system evaluation. Clutters in the environment (shown
in Fig. 4) pose challenges for data associations of Li-
DAR points. The averaged ATE [23] are computed with
the provided ground truth to compare the LIC-Fusion 2.0,
OpenVINS-IC, Proposed-LI, LOAM, LIO-MAP, and LIC-
Fusion. The results are shown in Table. VI and Fig. 5, the
cases with transitional errors more than 20 meters are marked
with “-”. The proposed LIC-Fusion 2.0 with reliable data
associations over the sliding window outperforms the other
algorithms. We appreciate the help from the authors of LIO-
MAP [22] for parameters tuning to achieve better accuracy.
However, LIO-MAP still fails on some sequences due to
error-prone data association in clutter environment and lack
of time synchronization between LiDAR and IMU.

The results demonstrate that LIC-Fusion 2.0 with the
novel temporal plane tracking and online spatial/temporal
calibration can achieve better accuracy than existing LiDAR-
IMU-CAM fusion algorithms. We further examine the com-

putational cost (shown in Fig. 6) of the main stages when
running it on Seq 6 on a desktop computer with Intel i7-
8086k CPU@4.0GHz. The averaged processing time for its
IMU-CAM subsystem is 0.0168 seconds, and for its LiDAR-
IMU subsystem is 0.0402 seconds. Thus LIC-Fusion 2.0 is
suitable for real-time applications in this indoor scenario.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we have developed a robust and efficient
sliding-window plane-feature tracking algorithm to process
3D LiDAR point cloud measurements. We integrated this
tracking algorithm into our prior LIC-Fusion estimator re-
sulting in LIC-Fusion 2.0 with improved performance. In
particular, during the proposed plane-feature tracking, we
have advocated a new outlier rejection criteria to improve
feature matching quality by taking to account the uncer-
tainty of the LiDAR frame transformations. Additionally,
we have investigated in-depth the observability properties of
the linearized LIC system model and identified the degener-
ate cases for spatial-temporal IMU-LiDAR calibration with
plane features. The proposed approach has been validated in
both simulated and real-world datasets and shown to achieve
better accuracy than the state-of-the-art algorithms. In the
future, sliding-window edge-feature tracking in LiDAR scans
will be investigated.
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