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Abstract— Aiming for a lightweight and robust localization
solution for low-cost, low-power autonomous robot platforms,
such as educational or industrial ground vehicles, under chal-
lenging conditions (e.g., poor sensor calibration, low lighting
and dynamic objects), we propose a two-stage localization
system which incorporates both offline prior map building and
online multi-modal localization. In particular, we develop an
occupancy grid mapping system with probabilistic odometry
fusion, accurate scan-to-submap covariance modeling, and
accelerated loop-closure detection, which is further aided by
2D line features that exploit the environmental structural
constraints. We then develop a versatile EKF-based online
localization system which optimally (up to linearization) fuses
multi-modal information provided by the pre-built occupancy
grid map, IMU, odometry, and 2D LiDAR measurements with
low computational requirements. Importantly, spatiotemporal
calibration between these sensors are also estimated online
to account for poor initial calibration and make the system
more “plug-and-play”, which improves both the accuracy and
flexibility of the proposed multi-sensor fusion framework. In
our experiments, our mapping system is shown to be more
accurate than the state-of-the-art Google Cartographer. Then,
extensive Monte-Carlo simulations are performed to verify both
accuracy, consistency and efficiency of the proposed map-based
localization system with full spatiotemporal calibration. We also
validate the complete system (prior map building and online
localization) with building-scale real-world datasets.

I. INTRODUCTION

Providing versatile, lightweight, and robust localization
with centimeter-accuracy for indoor ground robots holds
potentially huge implications for the practical development
of autonomous systems. Within the service, educational,
and commercial sectors, ground vehicles are a fundamental
transportation platform which enable higher level tasks (e.g.,
package delivery, inspection, or environmental mapping).
Accurate localization is crucial to robotic autonomy, but
is limited by both the sensor payload limit, cost, and
computational requirements for processing sensor data and
multi-sensor fusion for state estimation. Hence, an efficient
localization system which fuses information of multiple
modalities (e.g., inertial, odometry, range, camera, ultra-wide
band) has been a research focus over the past decades [1].

A particular application that has attracted large amounts
of attention, due to high accuracy requirements in chal-
lenging large scale dynamic environments, is autonomous
warehousing [2]. Light detection and ranging (LiDAR)-based
localization systems have become a focus of indoor ground
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robots due to LiDAR’s robustness to external factors (e.g.,
poor lighting conditions), complementary use in collision
avoidance safety systems, and simplicity of the collected
measurements. However, these LiDAR only systems suffer
from degenerate cases, such as long corridors – requiring
additional sensing information to be fused to increase local-
ization accuracy. If low-end sensors are used, their lower
signal-to-noise ratios require careful modeling of sensor
errors and proper fusion of multiple noisy sources to reduce
the overall estimate uncertainty to acceptable levels. Thus, in
this work we focus on efficient fusion of multiple low-cost
multi-modal sensors to provide accurate localization while
running on computationally limited devices.

To that end, we propose a two part system: (1) an offline
2D mapping algorithm which builds an occupancy grid
and sparse line feature map in a tightly coupled nonlinear
optimization framework; (2) a versatile efficient filter which
leverages inertial information to handle non-2D irregularities
such as bumps and fuses odometry and LiDAR information
and leverages the pre-built map to bound localization drift,
while refining all sensor calibration parameters for improved
robustness. Specifically, the proposed localization system has
the following contributions:
• We build a submap-based occupancy grid mapping

system as in the well-known Cartographer [3], while
accurately modeling the scan-to-submap covariance and
performing probabilistic fusion with odometry readings.
We additionally exploit the environmental structure
and extract lines which provide geometric constraints
between poses. We also accelerate the loop closure
detection by leveraging the state estimate uncertainty
to limit the scan matching search window.

• We develop a 3D EKF-based online localization sys-
tem which optimally fuses inertial, odometry, and 2D
LiDAR sensors for accurate online state estimation. The
generated prior map is leveraged to bound the drift
of localization without the computational burden of si-
multaneously building it alongside the state estimation.
We additionally handle inaccurate sensor spatial and
temporal calibrations through online estimation of these
parameters and allowing for “plug and play” robots with
hand-measured calibration as initial guesses.

• The mapping system is compared to Cartographer on all
of the publicly available RADISH datasets, and shown
to be more accurate in most cases. We additionally show
that our mapping system can create better map quality
in a warehouse scenario.

• Extensive simulation evaluations of the localization
system are performed with analysis of different sensor
configurations and the convergence of calibration pa-
rameters. Additionally the impact of update frequency
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of prior map constraints is investigated.
• The complete system is validated on a real-world dataset

where we are able to localize within the prior map.
We evaluate the time consumption of the proposed
localization algorithm and quality of generated map.

II. RELATED WORK

2D LiDAR-based localization has received significant at-
tention over the past years [4], and its solutions can be
approximately categorized into two major families: particle-
based [5] and graph-based [3], [6], [7]. The former including
FastSLAM [8], GMapping [5], TinySLAM [9], [10], and
VinySLAM [11], has been of particular interest due to the
ability to run on low-power devices. However, achieving
accurate performance often comes at a higher computational
cost due to the large number of particles needed.

Among the graph-based methods, the state-of-the-art Car-
tographer [3] introduces an efficient scan-to-submap loop
closure detection algorithm and optimizes a global pose
graph that consists of both scan/submap-submap ego-motion
measurements and loop-closure constraints. However, this
mapping approach does not explicitly model the covariance
of their measurements and instead simply uses equal weights.
In this paper we introduce some important improvements
to this system to construct an offline map better suitable
for lightweight online localization; in particular, we model
the uncertainty of the scan-to-submap matching and perform
weighted least-squares optimization in our mapping system.

As the closest work to our localization system, Hec-
torSLAM [12] combines 2D multi-level occupancy mapping
alongside a 3D EKF which estimates the full 3D trajectory of
the sensor through 2D LiDAR and IMU measurements. The
3D EKF propagates forward with inertial measurements and
updates using covariance intersection of the optimized scan
matching result from their 2D mapping module. In contrast,
we perform online estimation of the extrinsic and time
offset calibration between all sensors to facilitate the easy
deployment to new robots. We additionally leverage a pre-
computed loop-closed prior map in our online localization
allowing for bounded accuracy in large-scale environments
without the extra cost of building it online.

III. 2D LINE AND OCCUPANCY GRID MAPPING

The proposed mapping system improves upon Cartog-
rapher [3]. Its architecture is outlined in Fig. 1. At each
timestep we optimize incoming scans to the current submap
while background threads perform loop closure detection
and optimization of the global pose graph which contains
relative pose, loop closure, and line cost terms. The non-
linear optimization problem is formulated and solved using
the Ceres Solver [13], with the state vector xmap given by:

xmap =
[
x̄1 · · · x̄k x̄f1 · · · x̄f`

]
(1)

where x̄i, i ∈ {1 . . . k} contains the 2D position Gp̄Li
1 and

the yaw angle GθLi (GLiR̄ in matrix form) of the LiDAR in
a global frame at time ti and xfj , j ∈ {1 . . . `} is a 2D line
feature, which will be explained in Sec. III-C.

1Note that throughout the paper, (̄·) denotes either a 2D vector or 2× 2
rotation matrix, and in its absence refers to a full 3D position or rotation.
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Fig. 1: We fuse odometry measurements with a new scan to obtain a single
relative pose edge for the pose graph and insert the scan into the current
submap. Extracted line features from the current scan are tracked to lines
in the state vector and added to the global pose graph. Background threads
detect loop closures between current scans and finished submaps using the
correlative scan matcher, and merge lines after loop closure.

A. 2D Odometry Measurements
The 2D wheel odometry measurement provides local yaw

angular velocity Oτω and x-direction linear velocity Oτ v.
The readings at timestep τ are given by:

Oτωm = Oτω + nwτ ,
Oτ vm = Oτ v + nvτ (2)

where nωτ ∼ N (0, σ2
ω), nvτ ∼ N (0, σ2

v). Hence, the relative
pose measurement z̄k−1,τ+1 (with corresponding covariance
Q̄k−1,τ+1) from odometry between tk−1 and tτ+1 (with
tk−1 ≤ tτ ≤ tτ+1 ≤ tk) can be integrated as:

z̄k−1,τ+1 =

 Ok−1θOτ + Oτωδtτ

Ok−1 p̄Oτ +

[
cos(Ok−1θOτ )
sin(Ok−1θOτ )

]
Oτ vδtτ

 (3)

Q̄k−1,τ+1 = Hτ Q̄k−1,τH
>
τ + Gτ Q̄oG

>
τ (4)

where Q̄o = diag{σ2
w, σ

2
v}. The pertinent Jacobians are

omitted here for brevity. Iterating over Eq. (3) and (4) with all
the odometry readings between tk−1 and tk, we get the 2D
relative pose measurements z̄k−1,k with covariance Q̄k−1,k.

B. Occupancy Grid Map
We store occupancy grids in a local submap frame to allow

for map corrections in the event of loop closure. Each cell in
the occupancy grid represents an r × r square of the world,
where r is the chosen grid resolution. The submap occupancy
grid stores the probability that there is an object in it and
is initialized to a probability of 0.5. A probability in the
occupancy grid M of submap S at location Sp̄ is denoted as
M(Sp̄), which involves simply rounding to the nearest cell
location. To update the map with a LiDAR scan, we use the
registered pose of the LiDAR {SLiR̄,

Sp̄Li} and trace along
the ray between the current LiDAR position and the scan
point Sp̄j . For the end point Sp̄j , we update the occupancy
with a user-defined probability that a LiDAR range reading
is a hit phit, and for all rasterized points along the ray we
similarly update with a miss probability pmiss. For both hit
and miss points, the probability update follows the form:

pnew = odds−1(odds(pold)odds(pupdate)) (5)

where odds(p) = p/(1− p) and pupdate takes either the hit
or miss probability depending on the case. We set a threshold
on the maximum number of scan insertions to a submap in
order to keep them small and be able to change the global
map in a useful way.
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1) Scan Matching: In order to accurately determine the
relative pose between LiDAR scans, we register new scans
to the current submap. Similarly to the Cartographer [3], we
use a nonlinear optimization to perform scan registration;
however, unlike the Cartographer system, we consider the
uncertainty of the scan points, initial guess, and the sampled
submap. We perform the registration in a relative frame in
order to obtain relative pose edges while using the initial
guess as a prior. The scan matching cost is given by:

cscan =

∥∥∥∥∥
[

Log(
Lj
Lk

R̄>
Lj
Lk

R̄(0))
Lj p̄Lk − Lj p̄

(0)
Lk

]∥∥∥∥∥
2

Ωinit

+

n∑
i=1

(
1−Ms(

S
Lk

T̄(Lk p̄i))
)2

σ2
si

(6)

where S
Lk

T̄ is the combined transformation of the relative
pose we are optimizing as well as the constant anchor pose
from the last registered scan j:

S
Lk

T̄(Lk p̄i) = S
Lj R̄(

Lj
Lk

R̄Lk p̄i + Lj p̄Lk) + Sp̄Lj (7)

Similar to Cartographer, we use bicubic interpolation with
Hermite splines to achieve a smooth version Ms of the
indexing function M , and use a finite difference formula
to estimate the necessary gradient ∂Ms

∂Sp̄i
. Lj p̄(0)

Lk
and Lj

Lk
R̄(0)

denote the initial guess of the relative pose, which can either
come from integrating odometry measurements, described
in Sec. III-A, or by performing a correlative scan match
with an exhaustive search [14] or depth-first search [3].
Besides odometry, the initial prior information, Ωinit, is
found as in [14] for both types of correlative scan matchers.
The cost function cscan penalizes the relative pose Lj x̄Lk
between frames {Lj} and {Lk}, which may not necessarily
be consecutive (e.g., scan matching for loop closure).

To probabilistically weight the scan cost, we compute the
uncertainty of each occupancy score residual zi, σsi, by
taking into account both the uncertainties of the scan and
the submap:

zi = 1−Ms(
S
Lk

T̄(Lk p̄i − ni))− nmap (8)

⇒ z̃i ' −
∂Ms

∂Lj ˜̄xLk

Lj ˜̄xLk −
∂M

∂ni
ni − nmap (9)

where ˜̄x represents the error states of relative pose, ni ∼
N (0,Qi) represents the LiDAR point measurement noise,
and nmap denotes the scalar occupancy noise. Note that the
map uncertainty σmap is computed by sampling the current
submap occupancy grid across the 4 × 4 grid used for the
bicubic interpolation. Hence:

σ2
si =

∂Ms

∂ni
Qi

(
∂Ms

∂ni

)>
+ σ2

map (10)

Since we perform a weighted graph optimization to perform
mapping, the uncertainty of the relative pose Lj x̄Lk is
needed. Its information matrix can be computed with the
final Jacobian from scan registration as:

Ωj,k = J>i Ji + Ωinit, Ji =
−1

σsi

∂Ms

∂Lj ˜̄xLk
(11)

C. Line Map
In order to further exploit the geometrical constraints of

structured indoor environments, line features can also be
utilized to enhance the mapping. Leveraging our prior work
[15], we propose to use 2D closest point (CP) to represent

the line features. If we use n and d to denote the line normal
direction and distance of line to origin, with the closest point
representation, the transformation of a CP line from global
to LiDAR frame can be written as:

x̄f = d · n̄,
[
Ln̄
Ld

]
=

[
L
GR̄> 02×1

−Gp̄>L 1

] [
Gn̄
Gd

]
(12)

Given a scan at time tk, we extract lines from the point
cloud as in [16]. The CP line measurement z̄f,k and its cost
function is given by:

z̄f,k = hf (x̄k, x̄f ) + n̄f,k (13)

cf = ‖z̄f,k − hf (x̄k, x̄f )‖2Q̄−1
f,k

(14)

where n̄f,k ∼ N (0, Q̄f,k) is white Gaussian noise.
As compared to using descriptor or χ2-based line match-

ing, we opt for a simpler and more efficient method which
relies on thresholding the distances of tracked lines to new
lines projected into the global frame. We consider two lines
being a match if: (1) the absolute difference of the line
distances is below a threshold, (2) the dot product of the line
normal vectors is above a threshold, and (3) if the minimum
Euclidean distance between the lines’ end points is below a
threshold. Otherwise, a new line is added to the state vector.
We have found via experiments that this method is suitable
to track lines over long periods of time.

D. Loop Closure
For an incoming scan, we first find the closest finished

submap within a fixed radius (i.e., a submap that will receive
no more scan insertions) that we wish to try and find
constraints for. Then, based on a correlative scan matcher, we
try to match the current scan to this map as follows: Using the
marginal covariance for both states that are being considered
for a loop closure, x̄i and x̄j , we calculate the search window
for the correlative scan matcher as the 3σ bound of the
current estimated relative pose and its covariance:

ix̄j=

[
Gθj − Gθi

G
i R̄>

(
Gp̄j − Gp̄i

)], Pij =
[
Hi Hj

][Pii Pij

P>ij Pjj

][
H>i
H>j

]
Hj =

[
1 01×2

02
G
i R̄>

]
, Hi =

[
−1 01×2

JGi R̄>
(
Gp̄j − Gp̄i

)
−Gi R̄>

]
where J =

[
0 1
−1 0

]
. Pii, Pij and Pjj are covariances and

correlations of state x̄i and x̄j . By properly limiting the
search window for scan matching, we are able to close more
loops faster as compared to using a fixed search window and
avoid invalid loop closures. When the search window is large,
we use the depth-first search scan matcher [3], and when it is
small we use an exhaustive search [14] – which will be faster
for smaller bounds due to the overhead of pre-computing
the upper bounds for the depth-first search. Note that for
large loops, the public implementation of Cartographer will
search the entire submap – the entire length and width of the
submap and in every possible orientation. This can be quite
slow, even with the efficient depth-first search, and can lead
to incorrect loop constraints in symmetric areas which our
proposed method typically avoids.

Once a scan-to-submap loop closure is detected with the
above method, we exhaustively search all lines in the state
vector to see if any should be merged into a single line.
Based on the same criteria as line tracking, but with different
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thresholds, if we find that two or more lines should be
merged, we remove all but one from the state vector, and
reroute the edges that were connected to the removed lines
to single merged line. These lines provide robust and high
quality loop closure constraints to the system. We found
that even though this is an exhaustive search, our method
to compare the lines is highly efficient, so this procedure
typically runs in a few microseconds – even on large maps.

IV. ONLINE LOCALIZATION

In this section, we present our versatile EKF-based multi-
sensor fusion for online localization, which can incorporate
multi-modal information from a pre-built map, odometry, or
LiDAR, if available, while automatically compensating for
spatial/temporal calibration variations. In particular, the state
vector of the proposed EKF consists of the current inertial
navigation state, two historical LiDAR poses, and the set of
extrinsic parameters.

xk =
[
xI xL xW

LtI
LtO

]
(15)

xI =
[
Ik
G R GpIk

GvIk bωk bak
]

(16)

xL =
[
Ik
G R GpIk

Ik−1

G R GpIk−1

]
(17)

xW =
[
L
I R LpI

O
I R OpI

]
(18)

where bωk and bak are the gyroscope and accelerometer
biases, and GvIk is the velocity in the global frame. We use
the right orientation error state R = R̂ Exp(−δθ), where
Exp(·) is the SO(3) matrix exponential [17], while for all
other vector quantities the error state is addition v = v̂ + ṽ.

We propagate the inertial state xI forward using incoming
IMU measurements of linear accelerations Iam and angular
velocities Iωm based on the following generic nonlinear
IMU kinematics [18] propagating the state from timestep
k − 1 to k and covariance Pk−1|k−1 forward in time:

x̂k|k−1 = f(x̂k−1|k−1,
Iam,

Iωm,0) (19)

Pk|k−1 = Φk−1Pk−1|k−1Φ
>
k−1 + Qk−1 (20)

where ·̂ denotes the estimated value and the subscript
k|k − 1 denotes the predicted estimate at time tk given the
measurements up to time tk−1. Φk−1 and Qk−1 are the
system Jacobian and discrete noise covariance matrices of
the linearized system [19]. We purposely choose the IMU
for propagation, as compared to using the wheel odometry,
since the the IMU is likely to have less spurious readings,
while wheel odometry can experience wheel slip could cause
incorrect state propagation and inconsistent estimation.

A general non-linear measurement function relates to the
states (e.g., relative and global pose measurements from ICP,
odometry integration measurements, etc.) can be written as:

zm,k = h(xk) + nm,k (21)

where we the measurement noise nm,k ∼ N (0,Rm,k). We
can linearize Eq. (21) and use it for standard EKF update.
We note that before any update we check if the measurement
passes a 95 percentile χ2-distribution gating test to prevent
bad measurements from corrupting our state estimates. In
what follows, we explain the pertinent measurements used
in our EKF update.

A. Pointcloud Projection
One of the challenges of using a 2D LiDAR sensor in a

3D world is that the alignment of 2D clouds are only valid if
they are measured in the same plane. If a 2D LiDAR records
a scan of a room, and then pitches upwards by 45 degrees,
the alignment result will be non-trivial even though the robot
has not moved. For ground vehicles this can be the case when
we go up and down a slope or hit a bump on the ground.
Thus, in order to properly find the alignment between two
scans, both need to be in the same 3D plane. Thus we project
all points from the current LiDAR frame into the global x-y
plane assuming the walls are aligned with gravity as follows:

L′k p̄f = L
I R̄Ik

G R̄Λ
(
Ik
G R>LI R>Lkpf

)
(22)

where Λ = [e>1 e>2 ]>, ei is the i-th standard basis, and L′k p̄f
is the 2D position of the point in the x-y plane, as seen from
yaw only local frame {L′k}.
B. Relative LiDAR ICP

We leverage the point-to-plane variant of iterative clos-
est point (ICP) [20] with covariance estimation of the
resulting transformation following [21], [22]. We use the
libpointmatcher library point-to-plane minimizer [23] and
the MatLab derivation code of [22] to implement the ICP
algorithm. We use a max of four neighbor points to compute
the pointcloud normal vectors and force the minimization to
only optimize a 2D transformation.

Projecting the last {Lk−1} and current {Lk} scans into the
global x-y plane, denote as L

′
k−1P and L′kP respectively, the

ICP algorithm provides:[
L′k−1

L′k
R̄m , L

′
k−1 p̄L′k,m ,Qicp

]
= icp

(
L′k−1P , L

′
kP
)

(23)

where Qicp is the calculated measurement covariance which
is based on the uncertainty of the points in each pointcloud.
As noted in [24], this covariance result can be extremely
overconfident and if directly incorporated would cause in-
consistencies. Thus we manually inflate this covariance by
a fixed amount over all datasets to ensure that we properly
capturing the noise of ICP alignment.

We now define the following measurement function:
L′k−1

L′k
R̄ = L

I R̄
Ik−1

G R̄Ik
G R̄>LI R̄> (24)

L′k−1 p̄L′k = L
I R̄

Ik−1

G R̄Λ(GpLk − GpLk−1
) (25)

where GpLi = GpIi−
Ii
GR>LI R>LpI . We can now linearize

the above measurement functions:
L′k−1

L′k
δθz = HθLx̃L + HθW x̃W + nθ (26)

L′k−1 p̃L′k = HpLx̃L + HpW x̃W + np (27)

where [nθ n>p ]> ∼ N (0,Qicp). We have the following
Jacobians in respect to our state:

HθL =
[
−e>3

L′k
G R̂ 01×3 e>3

L′k
G R̂ 01×3

]
HθW =

[
e>3
(L′k
L′k−1

R̂L
I R̂− L

I R̂
)

01×9

]
HpL =

[
H1 H2 H3 H4

]
, HpW =

[
H5 H6 02×6

]
H1 = Λ

L′k−1

G R̂bGp̂Lk − Gp̂Lk−1
+
L′k−1

G R̂>Lp̂Ic

H2 = −Λ
L′k−1

G R̂, H3 = Λ
L′k−1

G R̂bL
′
k

G R̂>Lp̂Ic
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H4 = Λ
L′k−1

G R̂, H6 = Λ (I− Lk−1

G R̂Lk
G R̂>)

H5 = Λ
(
L
I R̂bIk−1

G R̂(Gp̂Lk − Gp̂Lk−1
)c

+
Lk−1

G R̂Ik
G R̂>bLI R̂>Lp̂Ic −

Lk−1

G R̂
Ik−1

G R̂>bLI R̂>Lp̂Ic
)

Using these linearized measurement residual and Jacobians
we can perform our EKF update.

C. Global Prior Map LiDAR ICP
We first project the current {Lk} scans into the global

xy plane, getting the pointcloud L′kP . This cloud is then
aligned with the prior map pointcloud GM generated from
the mapping system. Directly doing the ICP in the global
frame of reference is very unstable and produces a covariance
unsuitable for estimation. Thus, we transform prior map
points in a local radius near to the current position into the
current frame of reference L

′
kM and perform ICP as follows:[

L′k
L+
k

R̄m , L
′
k p̄L+

k ,m
,Qicp

]
= icp

(
L′kP , L

′
kM

)
(28)

where the frame {L+
k } is the corrected {L′k} currently

estimated pose. Directly compounding this result gets the
ICP measurement in the global frame:
G
L+
k

R̄m = L′k
G R̄>

L′k
L+
k

R̄m,
Gp̄L+

k ,m
= ΛGpLk +

L′k
G R̄>L

′
k p̄L+

k ,m

Written as a function of the state we have:
G
L′k

R̄ = Ik
G R̄>LI R̄>, Gp̄L′k = Λ(GpLk −

Ik
G R>LI R>LpI) (29)

which can then be linearized to get the following measure-
ment error state and Jacobians:
G
L′k
δθz = HθLx̃L + HθW x̃W + nθ (30)

Gp̃L′k = HpLx̃L + HpW x̃W + np (31)

HθL =
[
−e>3

L′k
G R̂ 01×9

]
, HθW =

[
−e>3

L
I R̂ 01×9

]
(32)

HpL =
[
ΛbLkG R̂>Lp̂Ic ΛI3×3 02×6

]
(33)

HpW =
[
Λ
I′k
G R̂>bLI R̂>Lp̂Ic −Λ

L′k
G R̂> 02×6

]
(34)

D. LiDAR Time Offset Estimation
Note that for both relative and global ICP, we do not have

Jacbian in respect to time offset. We clone at the “true” time
that the LiDAR scan was collected at from the current state
pose from xI into xL. Following [25], we say that the true
will be near the current propagated estimate {IkG R̂,Gp̂Ik}
plus a small error during cloning:
Ik
G R = Exp(−ωLt̃I)IkG R̂, GpIk = Gp̂Ik + Gv̂Ik

Lt̃I (35)

E. Odometry Measurements
As compared to the mapping system we formulate a full

3D odometry measurement. In this case we create “psuedo”
measurements where the angular rate about the roll and pitch
and the velocity along the y and z-axes should be zero and
assign measurement uncertainties to these directions based
on the environment ground conditions. In the case that we
go up a hill and this “psuedo” measurement no longer holds,
the χ2 gating test will reject this invalid measurement. The
general 3D odometry readings at time τ are [see (2)]:

Oτωm = Oτωe3 + nwτ ,
Oτvm = Oτ ve1 + nvτ (36)

TABLE I: Key simulation / estimator parameters for each sensor.

Parameter Value Parameter Value

IMU Freq. (hz) 200 Wheel Freq. (hz) 100
LiDAR Freq. (hz) 10 LiDAR Clones 2
Gyro. White Noise 1.6968e-04 Gyro. Rand. Walk 1.9393e-05
Accel. White Noise 2.0000e-03 Accel. Rand. Walk 3.0000e-03

Odom. Ang. Noise (rad/s) 8.0000e-03 Odom. Vel. Noise (m/s) 2.0000e-02
LiDAR Ray Noise (m) 3.0000e-02 LiDAR FOV (deg) 270

LiDAR Ang. Resolution (deg) 0.5 Prior Map Cell Size (m) 0.05
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x-axis (m)
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Fig. 2: Trajectory plot of the simulated structured environment containing
236 planes, 348 meter in length trajectory, and average speed of 1.8 m/s.

where nv and nw denotes white Gaussian noises. The
integrated relative pose and measurement covariance between
tk−1 and tτ+1 is as follows:

Ok−1

Oτ+1
R =

Ok−1

Oτ
R Exp

(
(Oτωm − nwτ )δtτ

)
(37)

Ok−1pOτ+1
= Ok−1pOτ +

Ok−1

Oτ
R(Oτvm − nvτ )δtτ (38)

Qk−1,τ+1 = HτQk−1,τH
>
τ + GτQmτG

>
τ (39)

where [n>wτ n>vτ ]> ∼ N (0,Qmτ ) is the noise covariance
matrix of a single odometry reading. Integrating Eq. (37)-
(39) over all odometry readings between tk−1 and tk, we get
a 3D relative pose measurement zk−1,k, covariance Qk−1,k,
and the measurement function:

zk−1,k =

[
Log(OI R

Ik−1

G RIk
G R>OI R>)

O
I R

Ik−1

G R(GpOk − GpOk−1
)

]
+ no (40)

where no ∼ N (0,Qk−1,k) and the positions are GpOi =
GpIi −

Ii
GR>OI R>OpI . We omit the Jacobians in respect

to the state and calibration here for brevity. They are in the
same form as the 2D LiDAR relative, Sec. IV-B, but without
the projection matrices.

To handle calibration of the time offset we follow a logic
close to that introduced in Sec. IV-D. In this case, the poses
in our state are cloned at the “true” LiDAR clock time. Thus
when we calculate our preintegrated odometry measurement,
we propagate to the current estimate of the true LiDAR time.
Using the expansions in Eq. (35) we can find the derivative
of the propagated states in respect to the true LiDAR clones
that are in our state (see [26] for a detailed discussion).

V. SIMULATION RESULTS

Building upon our prior LIPS [27] and OpenVINS [28]
simulators we simulate a sensor suite moving through an
indoor environment defined by a 2D floorplan and trajectory,
see Fig. 2. We enforced that the orientation of the system is

TABLE II: System evaluation with different configurations (15 runs).
Configuration RMSE Ori. (deg) RMSE Pos. (m) NEES Ori. NEES Pos.

IMU + REL 14.034 4.344 4.122 4.845
IMU + REL + ODOM 3.714 1.221 2.574 1.693

IMU + PRIOR 0.201 0.047 1.979 0.595
IMU + PRIOR + ODOM 0.191 0.043 2.406 1.564

IMU + PRIOR + ODOM + REL 0.182 0.040 2.344 1.464
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Fig. 3: Calibration errors of each parameter (solid) and 3σ bound (dotted) for six different runs under planar motion. Each colors denote runs with different
realization of the measurement noise and the initial values.

TABLE III: RMSE for different map update rates averaged over 15 runs.

Prior Update Freq. (Hz) RMSE Ori. (deg) RMSE Pos. (m)

10 0.182 0.040
1 0.303 0.063

0.20 0.454 0.100
0.10 0.569 0.153

always along the velocity direction and is a pure 2D trajec-
tory by setting the z-axis values to be zero, thus modeling
our ground robot’s nonholonomic motion constraint. LiDAR
range measurements are generated by intersecting rays from
the true LiDAR pose with the 3D planes which have been
extruded vertically from the 2D floorplan. We select the
closest intersection as the LiDAR range measurement and
reject any that are further then the max range of the sensor.
The prior map is generated using the 2D floorplan whose
lines are sampled at the desired prior map cell size (i.e., along
a line that defines a wall, we create a prior map points at fixed
intervals along the line). All measurements are corrupted by
some white Gaussian noise, while the IMU has additional
time-varying bias term added. Table I, has the key sensor
frequencies, sensor properties, and noise parameters used
during simulation. For all experiments we report the error
in the 2D plane while consistency metrics are for the full
3D estimated states.

A. Sensor Impact Comparison
Table II, shows the average root mean squared error

(RMSE) and normalized estimator error squared (NEES) of
15 simulated Monte-Carlo runs with all online calibration
enabled and for a 2D trajectory through the simulated en-
vironment with different sensor configurations. As noted in
Sec. IV-B, we inflated the covariance of the ICP algorithm by
a fixed amount over all datasets and experiments. Even so,
in the IMU + relative LiDAR we have slightly inconsistent
estimation due to this inflation, while when additional sen-
sors are used the filter becomes slightly under-confident in its
estimates. We found that being under-confident provided far
superior estimation accuracy as compared to having a over-
confident filter. The prior map greatly reduces the estimation
error and using all measurements provides the best accuracy.

B. Frequency of Prior Map Updates
Another key question is how often do we need to get

prior map updates to obtain the impressive accuracy provided
by the prior map? Table III shows the estimation error of

Fig. 4: A map generated by Google Cartographer (top left) and our mapping
system (top right) in a warehouse environment. The LiDAR frame trajectory
is shown in yellow with the start and end points in green and red,
respectively. Line features are overlaid in blue for our map. Cartographer
was forced to sacrifice the map quality along the hallway (middle) in order
to close the loop, while our system successfully closed the loop and kept
the hallway in-tact (bottom).

the proposed system with inertial, odometry, relative LiDAR
updates at 10 Hz and prior map updates at a specified fixed
frequency. It can be seen that even when there are 10 seconds
between consecutive prior map updates the estimate is still
able to retain high accuracy as compared to not including
the prior map constraint.

C. Inspection of Online Calibration
We next looked to verify the ability of the proposed system

to perform online calibration. As shown in Fig. 3, it is
interesting that not all calibration parameters are able to cali-
brate. Specifically the LiDAR-IMU roll and pitch are unable
to quickly converge due to the 2D LiDAR measurements
only providing 2D constraints in the global x-y plane, and
indicates that robust online calibration of these parameters is
not guaranteed. Both LiDAR-IMU and odometry calibration
is unable to calibrate along the vertical direction which is
the normal direction of the x-y plane and is similar to
what is seen for IMU-camera [29] and odometry-IMU [26]
degenerate analysis.

VI. REAL-WORLD EXPERIMENTAL RESULTS

A. Mapping
We first compare the proposed mapping system against

Cartographer [3] and Graph Mapping [30], on the RADISH
datasets [31]. These absolute trajectory results are reported

4518

Authorized licensed use limited to: UNIVERSITY OF DELAWARE LIBRARY. Downloaded on May 22,2021 at 02:04:13 UTC from IEEE Xplore.  Restrictions apply. 



TABLE IV: The benchmark of our mapping method on the RADISH dataset.
The absolute errors of 2D poses are reported here. Note that the results of
Cartographer (Cart.) and Graph Mapping (GM) are quoted from [3].

Dataset Units Proposed Cart. GM

Aces m 0.013± 0.063 0.038± 0.043 0.044± 0.044
deg 0.081± 0.273 0.373± 0.469 0.400± 0.400

Intel m 0.046± 0.063 0.023± 0.024 0.031± 0.026
deg 0.274± 1.57 0.453± 1.34 1.30± 4.70

MIT Killian
Court

m 0.174± 0.824 0.040± 0.049 0.050± 0.056
deg 0.069± 0.339 0.352± 0.353 0.500± 0.500

MIT CSAIL m 0.009± 0.034 0.032± 0.036 0.004± 0.009
deg 0.571± 4.28 0.369± 0.365 0.050± 0.080

Freiburg building
79

m 0.012± 0.033 0.045± 0.035 0.056± 0.042
deg 0.153± 1.01 0.538± 0.718 0.600± 0.600

Freiburg hospital
(local)

m 0.379± 1.94 0.108± 0.194 0.143± 0.180
deg 0.649± 3.64 0.747± 2.05 0.900± 2.20

Freiburg hospital
(global)

m 175± 420 5.22± 6.62 11.6± 11.9
deg 1.48± 5.03 3.34± 4.80 6.30± 6.20

Fig. 5: A two room (top) and building floor (bottom) datasets collected with
a Turtlebot3. Each map and the mapping trajectory (red) was used by the
localization system (blue) on a second dataset through the environment. The
batch optimized trajectory (orange) of the second dataset can also be seen.

in Table IV, where the results of the two methods are
reported from [3]. The proposed method is able to achieve
better accuracy on a large number of the datasets, thus
confirming that the inclusion of measurement uncertainty and
line segments has significant impact on accuracy.

For further validation, we compare our system to Google
Cartographer [3] in a warehouse scenario. The result of this
experiment can be observed in Fig. 4. Due to using line
features and covariance weighting, we are able to achieve
a higher map quality in this case. Cartographer’s map of
the lower hallway becomes corrupted after the loop closure,
while our system correctly keeps the walls together. By
estimating the uncertainty of the scan measurements and also

Fig. 6: Timing of different system components reported in milliseconds for
the building floor dataset. Recorded on an Intel(R) Xeon(R) CPU E3-1505M
v6 @ 3.00GHz processor in single threaded execution.

including the line features, the nodes in the lower hallway are
very well constrained in the vertical direction, and will tend
to only move in the direction parallel to the walls during
optimization, while Cartographer’s equal weighting system
causes the hallway to fall apart. Note that we used the values
from Cartographer’s PR2 demonstration, with the addition of
wheel odometry.

B. Online Localization on Turtlebot3
To validate the system as a whole, we demonstrate its

ability to easily run on a commercially available Turtlebot3
2 system equipped with its integrate wheel encoders, inertial
measurement unit, and an inexpensive RPLIDAR-A13. The
IMU runs at 118 Hz, odometry at 25 Hz, and LiDAR at 7 Hz,
and all calibration initial values are hand measured. These
parts cost no more then $550 USD online, with the LiDAR
making up only $100 USD of the total. The Turtlebot3 is
an excellent platform for robotic education, research, hobby,
and product prototyping.

To overcome the “kidnapped robot” problem on startup,
we leverage a depth-first search on the loaded map occupancy
grid with hand-picked bounds. The prior map was generated
based on a different collected dataset than the localization
test dataset. After finding the initial location in the prior
map, we transform the yaw and xy location from the LiDAR
to IMU sensor frame. The roll and pitch directions of the
orientation, which are observable given the IMU sensor, are
calculated using standard inertial frame initialization [28].
The orientation is the compound of the roll and pitch from
this procedure and the yaw of the IMU in the prior map
frame and the global xy of the IMU the position returned by
the depth-first search.

To perform ICP on the prior map, the map occupancy grid
from the mapping session is loaded from disk and converted
into a pointcloud through thresholding the occupancy grid.
It is important to note that we only perform global ICP with
points locally, as mentioned in Sec. IV-C, randomly sample
to a smaller 1.5k subset, try to match to the prior for every
incoming LiDAR scan, and generated the prior map on a
separate dataset through the environment.

In Fig. 5, the EKF localization trajectory can be seen over-
laid along with the batch-optimized mapping trajectory used
to generate the prior map.4 While there is no groundtruth, a
visual inspection of the trajectory compared to the mapping
system’s output on the same localization dataset shows good
estimation and constraint within the prior map. In general the
localization trajectory closely follows that of the optimized
trajectory. Shown in Fig. 6, it is clear that the system is able

2https://www.turtlebot.com/
3http://www.slamtec.com/en/lidar/a1
4https://youtu.be/sxq75Cgeb48
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to incorporate all three measurement sources at very high
speed. For the two room dataset it took 12.3 ms to update
on average and for the building floor dataset it took 15.4 ms.
The ICP with the global map takes the most time being an
average of 9.2 and 11.3 ms, respectively. It should also be
noted that one can reduce the computation by only trying to
get a prior map constraint at a lower frequency. We found
that on the building floor dataset we could do prior map
updates at 1 Hz and still get the same generated trajectory
with an average update time of 4.2 ms.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we have developed a 2-stage multi-sensor lo-
calization system, which incorporates both offline prior map
construction and online multi-sensor map-based localization,
for low-cost low-power autonomous ground robots. For
the mapping functionality, we have introduced the accurate
scan-to-submap covariance modeling, probabilistic odometry
reading fusion, and accelerated loop-closure detection. Our
mapping system is shown to have generally superior perfor-
mance to Cartographer. A 2D line map is built along with the
occupancy grid map to exploit the environmental structural
constraints. During online localization, a versatile 3D EKF-
based system, which leverages the pre-built occupancy grid
map, optimally fuse inertial, odometry and 2D LiDAR mea-
surements, if available. Spatial-temporal calibration between
these sensors is estimated online to handle poor initial
guess and “plug and play” applications. Extensive Monte-
Carlo simulations verified both the accuracy, consistency,
and robustness of proposed localization system, while the
complete system was validated on a two room and building
floor realworld datasets. In the future we will exploit inertial
measurements in the mapping and incorporate visual sensors
in both mapping and localization.
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