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Tightly-Coupled Visual-Inertial Localization and 3-D
Rigid-Body Target Tracking

Kevin Eckenhoff , Yulin Yang , Patrick Geneva , and Guoquan Huang

Abstract—In this letter we present a novel method to perform
target tracking of a moving rigid body utilizing an inertial measure-
ment unit with cameras. A key contribution is the tightly-coupling
of the target motion estimation within a visual-inertial navigation
system (VINS), allowing for improved performance of both the
processes. In particular, we build upon the standard multi-state
constraint Kalman filter -based VINS and generalize it to incorpo-
rate three-dimensional (3-D) target tracking. Rather than repre-
senting the target object as a moving point particle (which is often
the case in the literature), we instead utilize a dynamic, 3-D rigid-
body model, wherein orientation, position, and their derivatives
are estimated, as well as the structure of points on the object. We
then leverage visual bearings to this set of features for target mo-
tion estimation, rather than requiring continuous observation of a
single representative point over the tracking period. Moreover, we
propose three motion models which capture most commonly-seen
tracking scenarios in practice such as UAVs, fixed-wing aircraft,
and ground vehicles over changing slopes and perform an observ-
ability analysis with geometric interpretation, providing insights
into parameter initialization, and modes of estimation drift. The
proposed estimator is validated with bothMonte-Carlo simulations
and real-world experiments where it is shown to offer accurate per-
formance even for challenging trajectories that do not completely
fit the selected model.

Index Terms—Visual tracking, localization, SLAM, visual-based
navigation.

I. INTRODUCTION AND RELATED WORK

THE ability of a robot to detect and track moving objects is
a key component in a wide variety of application domains

such as military surveillance and autonomous driving [1]. In
many of these scenarios, the robot is not equipped with perfect
knowledge of its state, such as through a motion-capture system,
global positioning system (GPS), or through a prior map of the
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environment. As such, the system must process the data from
noisy, onboard sensors to estimate both its own and the target
states. This can be seen as a generalization of the classical SLAM
problem, wherein the robot attempts to concurrently determine
its location and the structure of the static environment, which
has seen a great amount of research efforts in the past three
decades [2].

For many applications of the target tracking problem, such
as in unmanned aerial vehicle (UAV) surveillance, payload and
computational resources are greatly constrained. This motivates
the development of computationally efficient target tracking
algorithms that can leverage the information from low-cost,
lightweight sensors, while still performing robust and accurate
estimation. For such resource constrained platforms, an inertial
measurement unit (IMU) with monocular or stereo cameras has
recently prevailed as a popular minimal sensing capability for
motion estimation, which has been enabled by and driven a large
amount of research in recent years into visual-inertial navigation
systems (VINS) [3]–[6]. These algorithms can be mainly divided
into two broad categories: filtering and batch-based approaches.

In the filtering domain, one of the earliest, and yet still one of
the most popular, solutions to the VINS problem is the multi-
state constraint Kalman filter (MSCKF) [3]. This approach pro-
cesses inertial data through the propagation stage of an extended
Kalman filter (EKF). Following this, features in the environment
measured by the camera are quickly marginalized via a nullspace
projection (which can be seen as linear marginalization [7]).
This process generates measurements for use in the EKF update
which relate only to stochastically cloned historical IMU/camera
poses, thereby preventing the need to store the features in the
state vector. The popularity of this algorithm has led to several
extensions, such as performing online camera-to-IMU spatial
and temporal calibration [8], fusing rolling shutter cameras [9],
and improving consistency [10]. In addition, an inverse form of
the MSCKF has recently been developed for use on mobile de-
vices [11]. Batch-based methods, by contrast, solve a nonlinear
maximum a posteriori (MAP) estimation problem over either
the entire set, or sliding window, of measurements [5]. These
methods offer improved robustness and accuracy over filtering
methods at a cost of increased computational complexity. The
recent development of IMU preintegration has allowed for even
more efficient batch-based solutions [4], [12]–[14].

While the function of SLAM is to map the environment while
tracking ego-motion, extensions to estimating other moving ob-
jects has seen recent research efforts. This coupled problem
is known as simultaneous localization, mapping, and moving
object tracking (SLAMMOT). Wang et al. [1] decoupled the
SLAMMOT problem into two different estimators. Chojnacki
and Indelman [15] provided a tightly-coupled batch solution
to vision-only SLAMMOT based on light bundle adjustment
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(LBA) [16], while treating the target as a point particle with
constant global velocity. Chen et al. [17] developed an active
visual-inertial target tracking system with a UAV. This method
separately estimates the sensing robot’s state using a VINS algo-
rithm, recovering the target motion by fitting a polynomial to a
sequence of relative position measurements from the camera to
the target. Lim and Sinha [18] utilized a semi-coupled approach
where monocular visual odometry (VO) was run independently,
and bearing measurements to a target human of known height
were used to recover the scale. The camera estimates were then
fused with target measurements in a separate EKF to estimate
the position and velocity of both the camera and the target’s foot.

A recent work related to our proposed method is by Li et al.
[19], who used stereo vision to track the ego-motion of an au-
tonomous vehicle. The pose, motion parameters, and 3D fea-
ture structure of objects were then estimated through a separate,
loosely-coupled batch optimization, given the output estimates
of visual SLAM and a dimensional prior for the objects. It
should also be noted that very recently Qiu et al. [20] proposed
a loosely-coupled visual-inertial estimation approach for object
pose tracking, wherein the sensing device’s state was estimated
using VINS, while the target’s historical poses and feature points
were recovered in a separate estimator. While this method dis-
played impressive ability to track motion over a sliding window
of images, it did not directly enforce a motion model on the
object’s entire pose (only position), and it is not clear if it can
be used to reliably predict the target’s future motion, which is
often required in active target tracking systems.

In this work, we propose a tightly-coupled estimator for
visual-inertial localization and target tracking (VILTT) by build-
ing upon the computationally efficient MSCKF-based VINS
framework and generalizing to incorporate 6DOF rigid-body
target tracking of a 3D moving object. In particular, the main
contributions of this work are the following:

� We represent the target object as a rigid structure built
from features and incorporate this representation into the
MSCKF using different motion models. This representa-
tion allows for robust estimation of the target state even if
the same feature is not continuously seen over a trajectory
due to changing viewing angles or occlusions.

� We offer an extensive observability analysis of the sys-
tem with the three proposed target motion models, and
show that, besides the four unobservable directions inher-
ited from VINS [10], there will be additional unobservable
directions related to the target state, whose geometric in-
terpretations are also provided.

� The proposed tightly-coupled VILTT estimator, with each
of the three target motion models, is validated in Monte-
Carlo simulations and real-world experiments.

II. ESTIMATION BACKGROUND

Within the standard MSCKF framework [3], the IMU state of
an aided inertial navigation system (INS) is given by:

xI =
[

I
G q̄� b�

ω
Gv�

I b�
a

Gp�
I

]�
(1)

where I
G q̄ is the unit quaternion of JPL form parameterizing

the rotation I
GR from the global frame {G} to the current local

frame {I} [21], bω and ba are the gyroscope and accelerometer
biases, and GvI and GpI are the velocity and position of the
IMU expressed in the global frame, respectively. The error state

corresponding to (1) is:

δxI =
[

I δθ�
G δb�

ω
Gδv�

I δb�
a

Gδp�
I

]�
(2)

The relationship between the vector quantities with true value v,
mean value v̂, and error state δv takes the form v = v̂ + δv. For
quaternions in JPL convention, with true value q̄, mean value
ˆ̄q, and error state δθ, we have q̄ ≈ [(δθ/2)� 1]� ⊗ ˆ̄q, with ⊗ as
the quaternion multiplication.

A. Inertial State Propagation

An IMU attached to the moving platform provides local linear
acceleration and angular velocity measurements. In particular,
the measurements am and ωm , are related to the true values, a
and ω, by:

am = a + I
GRGg + ba + na , ωm = ω + bω + nω (3)

where Gg � [0 0 9.81]� is the global gravity, and na and nω are
the continuous-time Gaussian noises which corrupt the mea-
surements (note that in the rest of this letter we let n denote
zero-mean Gaussian noises). The underlying IMU dynamics
are given by [22]:

I
G

˙̄q =
1
2
Ω(ω)I

G q̄, G v̇ = I
GR�a, G ṗ = Gv

ḃw = nbω , ḃa = nba (4)

where Ω(ω) = [−�ω�
−ω�

ω
0 ] and �·� denotes the skew symmetric

matrix. Using these dynamic models, the EKF propagation can
be performed according to [3].

B. MSCKF Feature Update

The first step of the MSCKF is to perform stochastic cloning,
such that our state vector also contains the estimates for the
poses of the robot during a sliding window of m historical
cloning times. At imaging timestep k, the augmented state xk

becomes:

xk = [xI xcl ]
� (5)

xcl =
[

Ik −1
G q̄� Gp�

Ik −1
| · · · | Ik −m

G q̄� Gp�
Ik −m

]�
(6)

where Ii

G q̄ and GpIi
refer to the position and orientation of the

IMU at imaging timestep i. As the sensor suite moves throughout
the environment, the image measurements corresponding to the
same tracked feature are collected over the sliding window. Each
measurement, zi , is expressed as a function of the corresponding
cloned pose and the global feature position:

zi = Π(Ci pf s) + nf i , Π
(
[x y z]�

)
=
[

x
z

y
z

]�

Ci pf s = C
I RIi

G R
(
Gpf s − GpIi

)
+ C pI (7)

where C
I R and C pI represent the camera-to-IMU calibration

parameters for the measuring camera, and Gpf s refers to the
position of the static feature in the global frame. In this work
we represent features using an inverse depth representation [3]
defined by mf = [α β ρ ]� in an arbitrary “anchoring” frame:

Gpf s = G
Ca

R

(
1
ρ

[
α
β
1

])

+ GpCa
(8)
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where Ca denotes the anchoring camera frame (in practice we
pick the anchor to be the frame that the feature was first seen
from). Utilizing the fact that scaling of the argument vector does
not change the projection function, we use the transformed, but
equivalent, measurement model:

zi = Π(ρCi pf s) + nf i (9)

This formulation prevents instability for features at a very far
distance. Using the current estimates for the clones in the win-
dow, triangulation is performed to recover an estimate for the
feature m̂f . We then linearize the system to obtain the robot
state Hx and 3D feature Hf Jacobians, as well as the linearized
residual system:

δz = Hxδx + Hf δmf + nf (10)

where δz is formed by stacking the individual measurement
residuals, δzi = zi − Π(ρ̂Ci p̂f s). The key idea of the MSCKF
is to find the matrix Q2 whose columns span the left nullspace
of Hf . Multiplying the above linear system on the left by Q�

2 ,
we obtain a new measurement function that depends only on the
robot state:

δz′ = H′
xδx + n′

f (11)

Therefore, we can directly use this measurement to update our
state using the well-known EKF update [3] without the need to
store the measured features in the state. This leads to substantial
computational savings as the problem size remains bounded
over the entire trajectory.

III. TARGET STATE ESTIMATION

A. Target State Representation

Leveraging the lightweight MSCKF framework, we now rig-
orously incorporate the tracking of an external 3D moving object
into the same estimation thread. The first problem that needs to
be addressed is how to represent the rigid-body target. That is,
we need to define what parameters must be estimated to fully
define the target and its motion.

One of the simplest representations is that of a point parti-
cle, which involves estimating a single position and its deriva-
tives [15]. In reality, however, we often wish to track the motion
of an arbitrarily large rigid object. Naive use of the point particle
model requires picking a single point on the target to serve as a
representation of the entire object, losing higher-level geometric
understanding. For example, when target tracking using vision
sensors, computer vision algorithms will possibly yield many
features (corners) on the body of the target. A point particle
model requires that we can only use one of these measurements,
i.e., the one corresponding to the representative feature. If this
feature becomes occluded, for example if the rigid body un-
dergoes a large rotation, we can no longer measure the target,
despite the fact that other features on the object can be still be
observed. Therefore, we are motivated to instead represent a
target as a set of structured points along with a pose.

In particular, we assume that the target evolves as a rigid
body. That is, the relative positions of all points that reside on
it, as expressed in a local body frame, remain fixed. We pick a
representative point to serve as the origin of a local body frame
(see Fig. 1). The pose of the target is then defined by the position
of this representative point, GpT , along with an orientation, T

G q̄.

Fig. 1. Illustration of the rigid body target tracking problem. As the sensor
suite moves through the environment, bearing measurements to features on the
evolving target’s body, shown as stars, are collected and tracked through the
sequence of images. To represent the pose of the target, a coordinate system is
chosen and attached to a representative feature (pink star).

In practice this representative point will often correspond to the
first seen target feature that can be reliably extracted over time.

B. Target Measurement Update

Similar to the standard static features [see (7)], image mea-
surements of points on the target’s rigid body are collected.
By abuse of notation, those measurements corresponding to the
representative feature are written as:

zi = Π(Ci pT ) + nf i (12)

Ci pT = C
I R Ii

G R
(
GpT − GpIi

)
+ C pI (13)

It is important to note that because the representative point’s
position is being estimated in this framework, this measurement
can be used directly in the EKF update.

Since the number of tracked features that do not correspond
to the representative point could be very large, we leverage the
MSCKF’s nullspace projection (i.e., linear marginalization [7])
to limit the state size. In particular, we concurrently maintain a
sliding window of target poses Ti = [Ti

G q̄� Gp�
Ti

]�, where for
convenience we let Ti denote the target pose clone associated
with IMU clone i corresponding to the same imaging time.
These non-representative feature measurements are given by:

zi = Π(Ci pf t) + nf i (14)

Ci pf t = C
I R Ii

G R
(

GpTi
+ Ti

G R�T pf t −GpIi

)
+ C pI (15)

In this case, the unknown feature state is the position of the fea-
ture expressed in the frame of the target, T pf t . We then perform
the same nullspace projection as the standard MSCKF with all
tracks of this dynamic feature allowing for an efficient update
that does not depend on the feature state. Alternatively, we can
choose to add a small subset of the additional features into the
state vector depending on the available resources, which we
have found yields a substantial improvement in the accuracy of
the target orientation estimate due to reobservations. In fact, we
have found experimentally that while these MSCKF-like target
features provide short-term orientation information, relying on
them solely will yield large orientation drift over a long period
of time, thus motivating us to keep a small, sparse set of features
in the state.

As in the standard MSCKF, an initial estimate of the marginal
parameter (non-representative feature) must be obtained in or-
der to perform the nullspace projection [see (10)], as well as
variable initialization. To this end, we use the following geo-
metric constraint about the unknown non-representative feature
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position, T pf t , (see Fig. 1):

T pf t = Ti

G R
(
GpCi

− GpTi

)
+ di

Ti

G RG
Ci

RCi ri ⇒ (16)
⌊

Ti

G RG
Ci

RCi ri

⌋
T pf t =

⌊
Ti

G RG
Ci

RCi ri

⌋
Ti

G R
(
GpCi

− GpTi

)

(17)

where di is the unknown depth of the feature in the i-th image,
and Ci ri is the corresponding measured bearing, and GpCi

is
the position of the measuring camera. Stacking all measure-
ments (17) for the feature taken over the interval, we build a
linear system that can be solved efficiently to obtain an estimate
of the local feature position. This estimate is then refined by a
local BA over the target feature utilizing the collected bearing
measurements.

C. Target Stochastic Motion Models

To incorporate target tracking (a dynamic system) into the
EKF framework, a motion model for propagation is needed.
Unlike the tracking robot, we have no access to proprioceptive
sensors for prediction of the target’s state. As such, we assume
a stochastic motion model and jointly estimate its parameters
alongside the target’s pose. In the following, we advocate three
possible motion models that can capture a large class of realistic
target tracking scenarios.

1) Model 1. Constant Global Linear Velocity: We first as-
sume constant global linear velocity, GvT , and constant angular
velocity, T ω, which yields the total target state and its dynamics
as:

x(1)
T =

[
T
G q̄� T ω� Gp�

T
Gv�

T

]�

T
G

˙̄q =
1
2
Ω
(
T ω
)

T
G q̄, G ṗT = GvT , G v̇T = ntv , T ω̇ = ntω

In particular, we treat both the linear and angular velocities as
continuous-time random walks driven by noises ntv and ntω .
The strength of the noise values can be used to capture the
predictability of the target based on its assumed motion model.
This model is ideal for scenarios in which the evolution of the
target’s orientation and position are decoupled. For example,
UAVs can move with full position and yaw control, and thus the
orientation is not strictly coupled with position. The error state
of this model evolves according to:

⎡

⎢
⎢
⎢
⎣

T ˙δθG

T ˙δω
G ˙δpT
G ˙δvT

⎤

⎥
⎥
⎥
⎦

=

⎡

⎢
⎣

−�T ω̂� I3 03 03
03 03 03 03
03 03 03 I3
03 03 03 03

⎤

⎥
⎦

⎡

⎢
⎢
⎣

T δθG
T δω

GδpT
GδvT

⎤

⎥
⎥
⎦

+

⎡

⎢
⎣

03 03
03 I3
03 03
I3 03

⎤

⎥
⎦

[
ntv

ntω

]

2) Model 2. Constant Local Linear Velocity: This model
assumes that the target exhibits constant velocity as seen from
its local frame. We therefore replace the global linear velocity in
the previous model with local velocity T vT . Such a model can
be used for example, for tracking ground vehicles or fixed-wing

Fig. 2. Illustration of the planar motion model. The target maintains a constant
yaw rate and local planar velocity. The noise injected into the model can be used
to handle changes in the ground plane.

aircrafts. The target state and its dynamics are given by:

x(2)
T =

[
T
G q̄� T ω� Gp�

T
T v�

T

]�

T
G

˙̄q =
1
2
Ω
(
Tω
)
T
G q̄, G ṗT = G

T RT vT , T v̇T = ntv , Tω̇ = ntw

with the corresponding error state dynamics:

⎡

⎢
⎢
⎢
⎣

T ˙δθG

T ˙δω
G ˙δpT
T ˙δvT

⎤

⎥
⎥
⎥
⎦

=

⎡

⎢
⎣

−�T ω̂� I3 03 03
03 03 03 03

−G
T R̂�T v̂T � 03 03

G
T R̂

03 03 03 03

⎤

⎥
⎦

⎡

⎢
⎢
⎣

T δθG
T δω

GδpT
T δvT

⎤

⎥
⎥
⎦

+

⎡

⎢
⎣

03 03
03 I3
03 03
I3 03

⎤

⎥
⎦

[
ntv

ntw

]

3) Model 3. Local Planar Velocity: In many applications, the
target is known to navigate in a locally planar environment (e.g.,
when tracking a ground vehicle). Rather than assuming pure 2D
scenarios, we allow for changing ground planes, for example,
when a vehicle goes up a ramp before coming to a new elevation
(see Fig. 2). A method to handle this plane change is to also es-
timate the current ground plane and add pseudo-measurements
that the target should operate in this plane [23]. We forgo directly
estimating the plane by proposing the following stochastic local
planar model:

x(3)
T =

[
T
G q̄� ωz

Gp�
T vx vy

]�

T
G

˙̄q =
1
2
Ω

([
nωx

nωy

ωz

])
T
G q̄, G ṗT = G

T R

[
vx

vy

nvz

]

v̇x = nvx, v̇y = nvy , ω̇z = nωz

In particular, along with the target pose we maintain the scalars
vx , vy , and ωz which describe the linear velocity in the local
frame and the angular velocity about the z-axis (yaw). This
motion model therefore constrains the evolution of the target
state to act with constant local velocity in a plane whose normal
lies along the axis of rotation. The noises in the other directions
allow us to model such effects as uneven roads and the changing
of the current ground plane (such as going up a hill). The error
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state evolves according to:
⎡

⎢
⎢
⎢
⎢
⎢
⎣

T ˙δθG

˙δωz

G ˙δpT

δ̇vx

δ̇vy

⎤

⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎣

−�T ω̂� e3 03 03×2
03 03×1 03 03×2

−G
T R̂�T v̂T � 03×2 03

G
T R̂ [e1 e2 ]

02×3 02×1 02×3 02×2

⎤

⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎣

T δθG

δωz
GδpT

δvx

δvy

⎤

⎥
⎥
⎥
⎥
⎦

+

⎡

⎢
⎣

03 L
01×3 e�3

G
T R̂K 03

J 02×3

⎤

⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎣

nvx

nvy

nvz

nωx

nωy

nωz

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(18)

where

L =

[1 0 0
0 1 0
0 0 0

]

,K =

[ 0 0 0
0 0 0
0 0 1

]

,J =
[

1 0 0
0 1 0

]
,

and ei is the 3 × 1 unit vector in the i-th axis direction.

IV. OBSERVABILITY ANALYSIS

In this section, we perform an in-depth observability analysis
for the linearized VILTT system with the three target motion
models. The key reasons for observability analysis include: (i)
it provides a deep insight about the system’s geometrical proper-
ties [10], [24], [25] and determines the minimum measurement
modalities or state parameters needed to initialize the estimator,
(ii) it can be used to identify degenerate motions [23], [26] which
cause additional unobservable directions and should be avoided
in real applications whenever possible, and (iii) the observability
constrained (OC)-based methodology as in OC-EKF [24] and
OC-VINS [10], that enforce the correct observability properties,
can be adopted to improve consistency.

For simplicity, we consider the case where the state vec-
tor contains the IMU state xI , target state xT (from Section
III-C), one static (environmental) feature Gpf s and one non-
representative target feature T pf t :

x =
[
x�

I
Gp�

f s x�
T

T p�
f t

]�
(19)

In analogy to [10], we construct the observability matrix for
the linearized VILTT system whose right nullspace spans the
unobservable directions. Intuitively, these unobservable direc-
tions correspond to state variables that cannot be recovered from
the measurement constraints. In the following, due to the space
constraint, we present the main results of our observability anal-
ysis, while the detailed analysis can be found in our companion
technical report [27].

A. Model 1

Given model 1 (constant GvT and constant T ω), if all mea-
surements to the static feature, target feature, and representative
point are available, the VILTT system will have at least 7 un-
observable directions corresponding to the global yaw, global
IMU position GpI , and the target orientation T

GR. Clearly, the
first 4 unobservable directions are inherited from VINS [10].
Interestingly, if the measurements of the target’s representative
point are unavailable (e.g., due to occlusion), the system will
have one more unobservable direction corresponding to the rep-
resentative point position along the rotation axis of T ω. In both

cases, the unobservable directions related to the target state are
the following:

N(1)
T
G R =

[
03×15 03 I3

(�T ω̂�)� 03 03
(�T p̂f t�

)�
]�

(20)

N(1)
G pT

=
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01×15 01×3 01×3 01×3

(
G
T0

R̂T ω̂
)�

01×3
(−T ω̂

)�
]�

(21)

B. Model 2

Given model 2 (constant T vT and constant T ω), if all mea-
surements available, the system will have at least 7 unobservable
directions as in model 1. Similarly, if no representative-point
measurements are available, the system will have 3 extra unob-
servable directions that correspond to the full 3D position of the
representative point. In both cases, the unobservable directions
related to the target state can be respectively found as follows:

N(2)
T
G R =

[
03×15 03 I3

(�T ω̂�)� 03
(�T v̂�)� (�T p̂f t�

)�
]�

(22)

N(2)
G pT

=
[

03×15 03 03 03

(
G
T0

R̂
)� (�T ω̂�)� −I3

]�
(23)

C. Model 3

Given model 3 (planar motion with constant ωz , vx , and vy ),
if all measurements are available, unlike the above two models,
the target’s roll and pitch will become observable and thus the
system has at least 5 unobservable directions, among which 4
are inherited from VINS and 1 corresponds to target orienta-
tion yaw. If no measurements of the representative point are
available, as in the case of model 2, the system will also gain 3
extra unobservable directions corresponding to the full 3D posi-
tion of the representative point. In both cases, the unobservable
directions related to the target state are given by:

N(3)
T
G R =
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It can be seen from these results that the VILTT systems will
have at least 4 unobservable directions inherited from VINS
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Fig. 3. 3D simulation trajectories of the tracking robot (black) and target
(blue): (a) general 3D target motion, and (b) constrained target motion. The
total tracking robot’s path length is 186 and 165 meters, respectively. The green
square and red diamond denote the start and end of the tracking robot and target
trajectories, respectively.

which correspond to the initial global yaw and global IMU po-
sition (see [10], [26]), while the extra unobservable directions
depend on the target motion model selected. Note that it is not
trivial to find a best representative point that will be frequently
measured, as a representative point that is occluded or cannot be
tracked reliably will make the system suffer from the introduc-
tion of additional unobservable directions. On the other hand,
an unobservable parameter can be initialized arbitrarily (unless
some prior information is available). For example, in models 1
and 2, the initial target orientation can be freely chosen due to
its unobservability, while in model 3, the orientation initializa-
tion procedure needs to be carefully addressed with available
measurements.

V. SIMULATION RESULTS

In this work we used a stereo visual-inertial system, but
note that the proposed method can also be deployed in a
monocular setting. The RotorS simulator [28], which lever-
ages Gazebo [29], was used to simulate an Asctec Firefly UAV
equipped with a stereo visual-inertial sensor as the active track-
ing robot, while another simulated robot acted as the passive
target. Two scenarios were created: (i) both the tracking robot
and a target Firefly move with 3D motion, and (ii) a Turtlebot
target is constrained to a 2D planar motion while the tracking
robot moves through 3D space. The ground-truth IMU readings
were corrupted using the realistic sensor characteristics of an
ADIS16448 IMU, while image measurements were corrupted
by one pixel noise. The rigid-body target was treated as a one
meter box with features lying around the surface of the bound-
ary, while static features were simulated around the workspace.

For both static and target feature measurements, occlusions
were simulated by checking whether the projection vector inter-
sected the boundary of the target’s box, ensuring that blocked
features were not used. Fourteen of the target features were
maintained in the state vector to prevent orientation drift in the
VILTT. We performed 30 Monte-Carlo simulations wherein a
single ground truth target and IMU trajectory was collected for
each scenario, and each Monte-Carlo run represented a different
realization of noise corrupting the corresponding measurements
(IMU and bearing). The performance metrics used are the root
mean squared errors (RMSE) of: (i) the 6DOF absolute (global)
pose (position and orientation) estimates of both the tracking
robot and target, and (ii) the relative position estimates between
the tracking robot and the target. We note that the relative po-
sition error may be of more importance than the absolute error
for certain scenarios such as autonomous target following.

We first evaluated the performance of the proposed VILTT
with the motion models 1 and 2, where both the tracking robot
and target moved along 3D trajectories as depicted in Fig. 3a.

TABLE I
AVERAGED RMSE RESULTS OF THE PROPOSED VILTT IN THE CASE OF

GENERAL 3D TARGET MOTION, SHOWING BOTH THE ABSOLUTE AND

RELATIVE ACCURACY OF THE REALTIME PERFORMANCE

TABLE II
AVERAGED RMSE RESULTS OF THE PROPOSED VILTT IN THE CASE OF

CONSTRAINED 3D TARGET MOTION, SHOWING BOTH THE ABSOLUTE AND

RELATIVE ACCURACY OF THE REALTIME PERFORMANCE

Fig. 4. Example image taken during the second experiment. A Turtlebot
equipped with fiducial tags acted as the target. These tags were used to dis-
tinguish features both on (light-blue) and off (red) the target by forming a
bounding box (yellow).

The Monte-Carlo results are shown in Table I. As evident, both
systems were able to achieve high accuracy and recover the
target’s 6DOF motion (both position and orientation). In this
experiment the orientation error for model 1 was much smaller
than that for model 2, which is most likely due to the fact that
the UAV had mostly decoupled orientation and position control.
Interestingly both models had very similar performance in the
position estimates for the target and the pose estimates of the
IMU. Note that although the estimated target trajectory did not
exhibit constant global or local velocity exactly, the proposed
models were still able to handle these imperfections due to
modeling the target’s velocities as random walks.

In the second simulation, we validated the performance of the
proposed VILTT with the three target models where the target
exhibited constrained motion as depicted in Fig. 3b. The Monte-
Carlo results of RMSE values are shown in Table II. Clearly, all
models were able to generate accurate trajectories for the target.
We note that for these results the orientation error of model 3
(planar motion) cannot be directly comparable to that of the
other two models, as the planar model is attempting to estimate
a partially observable target orientation (only the yaw of target
orientation is unobservable), while the other models estimate
the change in orientation from the arbitrarily initial value. It is
interesting to note that even though the target did not move with
ideal constant velocity, as it was driven by hand, all models were
able to handle this deviation from the assumed motion model.
Surprisingly, for this scenario the planar model actually gave
the worst result of the three models in terms of target position.
This is most likely due to the fact that the imperfections in each
model are being captured by the propagation noise whose char-
acterization may greatly impact the accuracy of estimation. It is
expected that better characterization of these noise levels would
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Fig. 5. Top-down views of the trajectories generated by the proposed VILTT estimator in two real-world experiments. Note that only the RTK-GPS measurements
(red) of the target were available. (a) The VIO (green) traveled a total distance of 85 meters, with the target (blue) moving 47 meters. The start and end positions
are denoted by a square and diamond of opposite colors, respectively. (b) In this scenario, the jump in the RTK groundtruth is due to GPS multipath errors from
nearby buildings. The proposed VILTT successfully tracks the target over its 81 meter long trajectory, despite losing sight multiple times (areas within the yellow
boundary boxes). This re-observance typically causes a (possibly) large target correction (see blown-up box).

yield better results, which will be investigated in future research.
We note that in this work, the noises were chosen to attempt to
capture the motions being executed by the simulations, rather
than directly simulating target motion noise by drawing from a
known distribution.

VI. EXPERIMENTAL RESULTS

In our real-world tests, to prove the concept of the proposed
VILTT estimator, we simplified the target segmentation through
the use of attached fiducial markers (see Fig. 4) around the tar-
get that can be reliably detected so that we can focus on the
evaluation of the target estimation accuracy. Of course, more
sophisticated target detection (e.g., based on deep learning) can
be leveraged for a given application domain, which however is
out of the scope of this work that is focusing on the estimator de-
sign for the VILTT system. We calculated a bounding box of the
target as the min/max image coordinates of the extracted fidu-
cial markers, and updated the bounding box over a small sliding
window to robustify it to failures in tag extraction. This informa-
tion was used to ensure that features were properly classified as
either on or off the moving target. We found in this experimental
setup that the target had to be within two or three meters to the
camera in order to provide reliable tag extraction, otherwise, the
system was not able to reliably detect the target. After extrac-
tion and computation of the target bounding box, we performed
KLT tracking of sparse feature points [30]. Specifically, we ini-
tialized new features using FAST [31] feature extraction in a
uniform grid pattern. KLT tracking was performed from both
left-left and right-right camera images temporally, as well as
left-right for stereo matches. We performed 8-point RANSAC
on the static features and rejected measurements if they failed
any of the three tracks. When features were lost or reached their
maximum track length, they were processed using the MSCKF
update step (either static or target-based). In this experiment,
we maintained the features corresponding to the center and top
left corner of each fiducial tag in the state vector. We should
point out that while we used fiducial tag corners in our filter,
we did not use any knowledge of the tag’s size in our estima-
tion, rather we relied on them only for target detection. Images
were collected at a rate of 20 Hz using a VI-Sensor [32], while
our system was able to process these images at a faster rate
(on average 30 Hz) on an Intel i7-4700MQ CPU @ 2.40GHz.
For comparison, the standard MSCKF takes 0.017 seconds per

frame, while the proposed method takes an average of 0.031
seconds per frame (approximate 1.8× computational increase).

We evaluated the proposed VILTT estimator on one of
datasets that we collected outdoor on the University of Delaware
campus, where an RTK-GPS was attached to the target robot
(Turtlebot) to allow for groundtruth comparison and the tar-
get traveled on a semi-planar brick surface. The tracking robot
(IMU/camera platform) was first initialized without the target in
view, and after 31 seconds of motion, the target entered the view
of the moving platform and was successfully initialized. Multi-
ple loops around the target were made to showcase the ability
to still localize the target without observation of the representa-
tive point. The tracking robot, target, and RTK-GPS paths are
overlaid onto satellite imagery as shown in Fig. 5a. The first 50
seconds of the target and RTK-GPS trajectories were used to
compute a “best fit” transformation to align the two frame of
references. For clarity, we present only the local velocity model
in Figure 5a, but all three models were able to successfully track
the target. Clearly, the target position estimates closely follow
the path of the RTK-GPS. We also utilized the fiducial tags to
compute the error in the estimated relative position between
the IMU and target during times when the representative tag is
visible. Although we note that “ground-truth” relative positions
from tag extraction might not be very accurate, we still found
that our estimator yielded an RMSE of 0.044 m.

In addition, we performed a second experiment wherein the
target executed a mostly straight trajectory with small sinusoidal
perturbations, followed by a sharp turn and continued motion.
In this scenario, loss of sight of the target across a few seconds
occurred due to actively facing the camera away from the target
multiple times along the trajectory, with the maximum time of
lost tracking being 7.4 seconds. While this sometimes led to
large target updates upon reobserving the Turtlebot after a long
period of pure propagation, the proposed VILTT was still able to
perform continuous estimation of the target, with the resulting
trajectory from using the local planar model shown in Fig. 5b.
However, we do note that during our experiments we found
that viewing the target from a new angle (no previously seen
target features are detected) upon reobservation after a period
of tracking loss such that new target features are initialized with
extremely poor estimates, could lead to divergence of the filter
upon reobservation. If this behavior is detected (such as through
Mahalanobis distance testing of incoming target measurements),
we recommend that the target be reinitialized. For this trajectory,
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the RMSE for the relative position from the estimator referenced
to the output value from tag extraction was 0.06 m.

VII. CONCLUSIONS AND FUTURE WORK

In this letter, we have developed a tightly-coupled state esti-
mation framework that cooperatively estimates a 3D rigid-body
moving target and visual-inertial sensor platform, which was
shown to achieve accurate realtime performance. In particular,
we represented the rigid object with both the 6DOF target pose
(orientation and position) and the features attached to it, allow-
ing for a robust tracking of the object even when the represen-
tative point feature is not observed. Moreover, to encompass a
broad range of realistic target tracking scenarios, three stochas-
tic target motion models have been introduced, along with a
thorough observability analysis of the corresponding linearized
VILTT systems. Monte-Carlo simulations and real-world ex-
periments have validated the feasibility of the proposed VILTT
estimator.

In the future, we plan to investigate proper characterization of
the target motion noises, as these, if chosen poorly, can actually
lead to degradation of the resulting IMU estimate due to the
introduction of inconsistency into the filter, (despite the expected
increase in accuracy due to tightly-coupling the localization and
tracking [33]). We note, however, in the extreme case where
good estimates for these noise parameters are not available, the
proposed system can be turned into a decoupled estimator by
setting all Jacobians with respect to the IMU and its clones to
zero for all target measurements. While this should theoretically
offer decreased accuracy compared to properly characterized
tightly-coupled estimation, it can protect the IMU estimates
from inconsistency. In addition, we plan to extend this system to
perform multi-object target tracking along with target detection
and automatic model selection.
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